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Introduction   
•  Multiple scales, complex heterogeneities, high contrast. 

•  It is prohibitively expensive to resolve all scales and 
uncertainties. Some types of reduced models are 
needed. 

•  Our objective is the development of reduced-order 
models 



Reduced-Order Modeling Concept 

Boundary cond., uncertainties,… 

Measurements  

3 

Lε (u) = f

L*(u) = f



Reduced/coarse models 
•  Numerical homogenization  

•  Multiscale (on a coarse grid) 
methods 

•  Uses global snapshots and find best n-dimensional 
subspace based on, e.g., POD, BT,… 
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Reduced-order model in a scale-separation case.  
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Macroscopic regionsRepresentative Volume Element;
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&=f(x), where k(x,y) is periodic in y, y = x

ε
.

û(x,x/ε) = u0 (x)+εN(x,y) ⋅∇xu0,  where N(x,y) is 
                        periodic in y and solves

divy(k(x,y)(∇yN+ I)) = 0 in Y

−div(k*(x)∇u0 )=f(x)

k*(x)= 1
|Y |

k(x,y)(∇yN+ I)
Y
∫  dy

|| u(x)− û(x,x/ε) ||
H1(D)

≤C ε



Reduced-order model in a scale-separation case. 
Homogenization 
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Macroscopic regionsRepresentative Volume Element;

−div(k(x, x
ε

)∇u)=f(x). Define y = x
ε

.

ûε  (x) = u0 (x)+εN x, x
ε

!

"
#

$

%
&⋅∇u0

This shows that the solution can be approximated in each
coarse region using very few (in 2D) "degrees of freedom".

In each coarse region,

∇xûε  (x) ≈ ∇xu0 (x)+∇yN x, y( ) ⋅∇xu0 ≈ I+∇yN x, y( )( ) ⋅ξ
where ξ=∇xu0 (x) ≈ const.

For some non-periodic cases, e.g., when k = k(x/ε,ω) is homogeneous and ergodic,
large Representative Volumes are needed (and periodic boundary conditions can be 
replaced by Dirichlet or Neumann, e.g., Bourgeat and Piatnitski, 2003).



Numerical homogenization 

k* = k∇φ1  k∇φ2"
#

$
%

In general, k*  can be computed by: (1) Lk (φi ) = 0 in K, φi = bi  on ∂K; 

(2) L
k* (φ

*
i ) = 0 in K, φ*

i = bi  on ∂K;  (3) Min. k* = arg min | Ei (φi )−
i
∑  E*

i (φ
*
i ) |



Scale separation issues 
•  Many applications don’t have scale separation and 

distinct features need to be modeled separately 
•  We want to find a reduced dimensional 

representation of the solution space on a coarse grid 
•  We use multiscale finite element concepts. 
•  “Optimal dimensional” coarse spaces are studied in 

preconditioners (joint work with Galvis, 2009, 2010)  

 
Coarse block 

Localizable features 

Non-localizable features 



Multiscale FE methods*.  
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 We look for a reduced approximation of fine-scale solution  

as , such that - *  is small. Goal is to find .
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*. Babuska and Osborn, 1983; Hou and Wu, 1997  



Multiscale FE methods.  

i ,  where u  are found by a "Galerkin substitution" (Babuska et al. 1984, Hou and Wu, 1997),  

               , , . Integrals can be approximated for scale separation case.
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∑

From Aarnes et al., 



Scale separation. Boundary conditions 
•  Numerical homogenization is similar to MsFEM with 

one basis per coarse node 
•  Local boundary conditions need to contain “correct” 

structure of small-scale heterogeneities.  

•  Piecewise linear boundary conditions result to large 
discrepancies near the edges of coarse blocks 

Error∝ ( ε
H

)β ,  where ε  is a physical scale and H  is the coarse mesh size, H >> ε.



Oversampling 
•  To reduce the effects of artificial local boundary 

conditions, oversampling techniques are 
developed and analyzed (Hou and Wu 1997, 
Efendiev, Hou, and Wu 1999, Gloria 2010,…) 

  with some constraints on ,  e.g., ( ) . Here  are oversampling

     basis functions defined on .

ovs ovs
i ij j j j i ij ic x

S

δ• Φ = Φ Φ Φ = Φ∑

•  These methods can have large errors. How can we 
enrich spaces in a systematic way? 



General Multiscale Model Reduction 
Framework (GMsFEM)* 

Example. −div(k(x;µ)∇p) = f ,    µ ∈ Λ,   k(x;µ) = kq (x)Θq (µ)
i
∑

*Efendiev, Galvis, and Wu, JCP 2011 and Efendiev, Galvis, Hou, Generalized Multiscale Finite Element Method, JCP 2013 



GMsFEM 

Not needed for 
parameter-independent 

problems 



(Local) Multiscale model reduction.  



Snapshot space 

• No parameter case: L(ψ j
ωi )=0 in ωi

ψ j
ωi = δ j  in ∂ωi

• The snapshot space consists 
  of unit vectors.
  Limitations: no oversampling, difficult to
  impose special properties



Snapshot space 
• Oversampling:  L(ψ j

ω+
i )=0 in ωi

+ ,  ψ j
ω+

i = δ j  in ∂ω+
i

Vωi
snap =Span{ψ j

ωi }

• Oversampling:  L(ψ j
ω+

i )=0 in ωi
+ ,  ψ j

ω+
i = R j  in ∂ω+

i ,

where R j  is i.i.d. Gaussians. 

Fewer snapshots are computed.



Offline space 
We would like to find a subspace of Ψωi

snap = span{ψ1
ωi ,...,ψMsnap

ωi } such that

      mωi
(u-u0 ) ≤ δ  aωi

(u-u0 ) for bilinear forms m(•) and a(•) and small δ. 

Offline space construction is based using "dominant" eigenvectors of:
     AoffΨk

off = λkMoffΨk
off

Example: ψTMoffφ := " k(x)ψ  
ωi

∫ φ ",     ψTAoffφ := " k(x)∇ψ ⋅∇φ
ωi

∫ "

Local spectral problems are motivated by analysis and depends
on global discretization, smoothness of the solution (ε), snapshots...

Define  Rsnap = [ψ1
snap ,...,ψMsnap

snap ]  (e.g., Rsnap = I for Choice 1) and

 Aoff = (Rsnap )T A Rsnap ,   Moff = (Rsnap )T M Rsnap



A coarse space construction. Example.  

• Start with initial basis functions Φi  and compute  k = k∇Φi ⋅
i
∑ ∇Φi .

• For each ωi ,  solve local spectral problem - div(k∇ψi ) = λi
kψi  (motivated by analysis) and

  choose "small" eigenvalues and corresponding eigenvectors.

Note that “special” eigenvalue 
problems are used. 



A coarse space construction. Example 

• Φi  are multiscale FEM functions -  k = k |∇Φii |2
i
∑  (choice of init. basis is important)

• - div(k∇ψi ) = λi k
ψi  

• Identify λ1=0 ≤ λ2 ≤ ...≤ λn .

•  There are 2 small (inversely ∝  to high-contrast) eigs 
   for multiscale Φii  and 6 for bilinear Φii

• "Gap" in the spectrum --- 
k |∇ψ |2∫

kψ 2∫
.

• For harmonic snapshots, the fast decay can be achieved by using oversampling in 
    the space of harmonic snapshots (Babuska and Lipton, MMS 2011)



A coarse space construction. Example 
 If there are many inclusions, we may have many basis functions. We

    know "many isolated inclusion domain" can be homogenized (one basis per node).
•

• Channels vs. inclusions.



Coarse space construction 

{ }0 Coarse space: i
i lV Span ωψ• = Φ

i
i

l
ωψΦ

i
l
ωψ

• Condition number of two-level (optimal) preconditioners - 1/Λ*  (with Galvis, SIAM MMS 2010)

• Coarse-grid approximation (under some assumptions) - Hγ / Λ*  (with Galvis and Wu, JCP, 2010)

• Multilevel preconditioners (optimal for high-contrast problems) (with Galvis and Vassilevski, 2010)



Online space 

• For parameter-dependent problems, the offline space is constructed using some
selected values of µi .

• In the online stage, for each new µ,  the local spectral problem is solved
to define multiscale basis functions.



Mixed GMsFEM 
•  Mixed formulation is needed for the mass conservation 

24  

Kj Kl

Ei !i

Figure 1: An example of a neighborhood !
i

= K
j

[K
l

associated with the coarse edge E
i

the edge Ei, namely,
!i =

[
{Kj 2 T H

; Ei 2 Kj}. (2)

See Figure 1 for an example of a neighborhood, where the coarse grid edges are denoted by solid
lines and the fine grid edges are denoted by dash lines.

The pressure p is approximated in the space QH which contains piecewise constant functions
with respect to the coarse grid T H . The multiscale basis functions for the velocity field are defined
edge by edge and are supported in the neighborhood !i corresponding to the coarse edge Ei.
Specifically, for each coarse edge Ei, we will solve a local problem in the neighborhood !i to
obtain a basis function. Notice that we can use multiple basis functions for each coarse edge. Let
{™i} be the set of multiscale basis functions for the edge Ei. We define the multiscale space for
the velocity field v as the linear span of all local basis functions which is denoted as

VH =

M

EH

{™i}.

We also define V 0
H = VH \ {v 2 VH : v · n = 0 on @D} as a subspace of VH consisting of vector

fields with zero normal component on @D. Given the above approximation spaces, the mixed

4

k−1  v + ∇p=0,    div(v)=f

k−1  v j
(i)  + ∇pj

(i)=0 in ωi     

div(v j
(i) )=α j

(i)   in ωi

v j
(i) ⋅mi =δ j

(i)   on E j

δ j
(i) =1 on j-th fine edge

v j
(i) ⋅ni =0  in ∂ωi



Mixed GMsFEM 
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Take Ψ j
i,snap := v j

(i)  and form V(i)
snap = span j{Ψ j

i,snap}

For each edge,  the local spectral problem is
     ai (v,w)=λmi(v,w), ∀w∈ V(i)

snap  

                mi(v,w)= k−1v ⋅w
ωi

∫ ,        ai (v,w)= [pv ][pw ]
Ei

∫

By selecting dominant eigenvectors, we form the offline space for the velocity
                       Voff = span{Ψ j

i,off }.
The offline space for pressure is piecewise constant functions.



Mixed GMsFEM 

26  

Remark. The eigenvalue problem can be considered via an optimization point.  

Theorem.  

    k−1 | vh − vms |2    Λ−1 ai (v̂
i
∑

D
∫ ,v̂) + O(H)

  Λ =min1≤i≤N0
λli+1

(i)



Numerical Results 

27 

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
 

 
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

(a) κ1

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
 

 
0

1

2

3

4

5

6

7

8

9

10

x 104

(b) κ2 (c) κ3 in log10 scale

Figure 2: Three permeability fields in the numerical experiments

and transport problems as well as two-phase flow and transport problems. To facilitate the pre-

sentation, we let (vf , pf ), (vs, ps) and (vo, po) be the fine grid solution, snapshot solution and the

GMsFEM solution respectively, where the snapshot solution is the solution of the discrete system

(3) with all basis functions in the snapshot space are selected. Notice that the snapshot solution

contains only the coarse grid discretization error and the GMsFEM solution contains both coarse

grid and spectral errors, see Theorem 1. Furthermore, we define the following error quantities for

the velocity field

Eof (v) := ‖vo − vf‖κ−1,D/‖vf‖κ−1,D, Eos(v) := ‖vo − vs‖κ−1,D/‖vs‖κ−1,D,

which are called the total error and the spectral error, respectively. For pressure, we define the

corresponding error quantities by

Eof (p) := ‖po − pf‖L2(D)/‖pf‖L2(D), Eos(p) := ‖po − ps‖L2(D)/‖ps‖L2(D).

These error quantities are used to measure the performance of the mixed GMsFEM in the examples

below.

6.1. Single-phase flow

We consider single-phase flow in this section. Two different coarse-mesh sizes with N = 10

and N = 20, called case 1 and case 2, will be used for the simulations. The numerical results for

the permeability fields κ1 and κ2 as well as the use of the above two spectral problems are shown

in Tables 1-4. In these tables, the term dof per E means the number of basis functions used for

that coarse edge E. In Tables 1-2, the convergence behaviors of the method for the permeability

field κ1 are shown for cases 1 and 2 respectively. Notice that, for case 1, each coarse grid block

is decomposed as a 20 × 20 grid while for case 2, each coarse grid block is decomposed as a

19

Basis per edge Error(v) 
2 0.06 
3 0.03 
4 0.013 
5 0.054 

Convergence is correlated  to 1/Λ



• Multi-phase flow and transport. E.g., two-phase - ∇⋅ λ(S)k∇p( ) = q,  St + v ⋅∇f (S) = 0,  

                                                                                   where v=-λ(S)k∇p.

• A workflow: offline - construct multiscale basis functions. (1) solve pressure equation (with 
mass conservative discretization) on a coarse grid, compute fine-scale velocity (adaptively); 
   (2) solve the saturation equation on a fine.

• Multiscale basis functions are not updated throughout simulations

Applications to two-phase flow and transport 



Numerical results 
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grid of resolution 220 by 220. Then the coarse grid is set to be 11 by 11, which means the local grid

is 10 by 10 in each coarse block. The saturation plot are depicted in Figures 12-15. In this example,

we observe that although at the first glance the multiscale saturation solution looks similar to the

fine solution if we use two multiscale basis per edge. However, if we take a closer look, we see that

some features in the water front are missing. When we use four or six basis per coarse edge, these

features can be recovered correctly. This shows the importance of these additional multiscale basis

functions. More quantitatively, we observe more error reductions from using 2 basis functions

per edge to 6 basis functions per edge compared with the previous examples. In particular, for

t = 1000, the relative error reduces from 11.7% to 3.6% when 2 basis functions are used per edge,

and for t = 5000, the relative error reduces from 11.3% to 5.3% when 6 basis functions are used

per edge.

(a) t = 1000 (b) t = 3000 (c) t = 5000

Figure 12: Saturation solution obtained by using vf in (36)

(a) Relative L2 error = 11.7% (b) Relative L2 error = 14.2% (c) Relative L2 error = 11.3%

Figure 13: Saturation solution obtained by using vo (11× 11 coarse grid, 2 basis per coarse edge) in (36)

7. Conclusions

In this paper, we have studied mixed GMsFEM for constructing mass conservative solution of

flow equation and investigated the applications to two-phase flow and transport. The novelty of

our work is the construction a systematic enrichment for multiscale basis functions for the velocity
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(a) Relative L2 error = 4.2% (b) Relative L2 error = 4.8% (c) Relative L2 error = 5.7%

Figure 14: Saturation solution obtained by using vo (11× 11 coarse grid, 4 basis per coarse edge) in (36)

(a) Relative L2 error = 3.6% (b) Relative L2 error = 4.4% (c) Relative L2 error = 5.3%

Figure 15: Saturation solution obtained by using vo (11× 11 coarse grid, 6 basis per coarse edge) in (36)

field. In particular, the construction of the snapshot and the offline spaces is one of our novel

contributions. We analyze the method and give an alternative view of eigenvalue construction.

Moreover, we discuss how the proposed approach can recover classical multiscale approaches

when the problem has scale separation. We present numerical results and also applications to

single and two-phase incompressible flow.
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Numerical Results 

30 Error~7% 



Mixed GMsFEM. Oversampling. 
•  Oversampling is important to reduce the degrees of freedom. 

31  

1. We generate "harmonic snapshots" in ωi
+  

2. Use their traces on Ei  and perform a local spectral
   decomposition
3. Extend the dominant traces to ωi

Kj Kl

Ei

ω+i

!

ωi

"

Figure 1: An example of a neighborhood ωi = Kj ∪Kl and ω+
i associated with the coarse edge Ei.

refinement of T H . We use EH :=
⋃Ne

i=1{Ei} (where Ne is the number of coarse edges) to denote

the set of all edges of the coarse mesh T H and EH
0 to denote the set of all interior coarse edges.

We also define the coarse neighborhood ωi corresponding to the coarse edge Ei as the union of all

coarse grid blocks having the edge Ei, namely,

ωi =
⋃

{Kj ∈ T H ; Ei ∈ ∂Kj}. (2)

See Figure 1 for an example of a coarse neighborhood, where the coarse grid edges are denoted by

solid lines and the fine grid edges are denoted by dash lines.

Let QH be the space of piecewise constant functions with respect to the coarse grid T H . The

approximation of the pressure p will be obtained in this space. On the other hand, a set of multi-

scale basis functions for the velocity field v are defined for each coarse edge Ei ∈ EH and these

basis functions are supported in the coarse neighborhood ωi corresponding to the coarse edge Ei.

Specifically, to obtain a basis function for a coarse edge Ei, we will solve a local problem in the

coarse neighborhood ωi with a given normal velocity on Ei and zero normal velocity on the bound-

ary ∂ωi. Notice that we can use multiple basis functions for each coarse edge Ei by using various

choices of normal velocity on Ei. Let {Ψj} be the set of multiscale basis functions for the edge Ei.

We define the multiscale space for the velocity field v as the linear span of all local basis functions

4

For problems with scale separation, the snapshots in 
the neighborhood of Ei  have a low dimensional structure.

∇xûε  (x) ≈ ∇xu0 (x)+∇yN x, y( ) ⋅∇xu0



Oversampling results 
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Table 7: Comparison of oversampling and without oversampling (relative velocity error w.r.t. fine scale solution),
κ = κper, n = 200

Coarse grid 10× 10 20× 20
dof per E Oversampling w/o oversampling Oversampling w/o oversampling

1 0.0324 0.3422 0.0573 0.6733
2 0.0294 0.0222 0.0283 0.0057
3 0.0214 0.0214 0.0068 0.0054
4 0.0214 0.0214 0.0056 0.0054

Table 8: Comparison of oversampling and without oversampling, κ = κ1, n = 200, N = 10
Oversampling w/o oversampling

dof per E Err wrt fine Err wrt snapshot Err wrt fine Err wrt snapshot

1 0.1336 0.1333 0.7640 0.7718
2 0.0400 0.0345 0.0991 0.0979
3 0.0234 0.0106 0.0593 0.0561
4 0.0213 0.0046 0.0407 0.0353

Table 9: Comparison of oversampling and without oversampling, κ = κ1, n = 200, N = 20
Oversampling w/o oversampling

dof per E Err wrt fine Err wrt snapshot Err wrt fine Err wrt snapshot

1 0.1400 0.1403 0.9628 0.9628
2 0.0358 0.0354 0.0603 0.0602
3 0.0087 0.0068 0.0290 0.0285
4 0.0060 0.0024 0.0130 0.0118

6.3. Single-phase flow and transport

We will now consider the simulation of single-phase flow and transport problems by the mixed

GMsFEM. Specifically, we consider the flow with zero Neumann boundary condition

−κ∇p = v, in D,

div v = f, in D,

v · n = 0, on ∂D.

In addition, the saturation equation is given by

St + v ·∇S = r,

where S is the saturation and r is the source. The above flow equation is solved by the mixed

GMsFEM and the saturation equation is solved on the fine grid by the finite volume method. Let

Sn
i be the value of S on the fine element τi at the time tn, where tn = t0 + n∆t, t0 is the initial
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Non-periodic 



Adaptive strategy 
• The multiscale basis functions are added in each coarse region using an error indicator
Adaptive enrichment: Choose 0<θ<1.
  1. Find ums

m ∈Voff
m,  a(ums

m, v)=(f,v),  ∀v ∈Voff
m

  2. For each coarse region ωi  compute

               ηi
2 =

||Qi ||2 (kmin,iλli+1
ωi )−1

|| Ri ||2 (λli+1
ωi )−1

$
%
&

'&
,   η1

2 ≥ ... ≥ηN
2

  3. Choose the smallest integer k s.t., θ  ηi
2

i=1

N

∑ ≤  ηi
2

i=1

k

∑

  4. Enrich the space by adding next modes

We show (Chung, Efendiev, Li, JCP 2014)

   ||u-ums
m+1 ||V

2 +c  Sm+1(
i=1

N

∑ ωi )
2 ≤ δ  ||u-ums

m ||V
2 +c  Sm (

i=1

N

∑ ωi )
2

!

"
#

$

%
&

for some δ  that depends on θ



Adaptive results 
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Adaptive for SIPDG discretization 
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Figure 2: compare different methods of enrichment
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Inexpensive snapshot computations 
•  Random boundary conditions on oversampled regions. To 

compute n basis, we choose n+4 snapshots 

36  

Dim Ratio (%) All (%) Random (%) 

536 6.81 0.71 1.33 
931 9.62 0.5 0.66 

•  Similar (to using all snapshots) convergence rate can be 
shown 

•  More accurate non-random snapshot spaces can be 
designed at a higher cost 

•  For adaptivity, each new iterate requires computing a few 
extra snapshots  



Some applications 
•  Acoustic Wave equations 

 

•  Brinkman flow 
•  Elasticity equations and elastic wave equations using Symmetric 

Interior Penalty Discontinuous Galerkin  
•  Applications to multilevel MC and multilevel MCMC 
•  Nonlinear problems (nonlinear diffusion, monotone operators). 

Estimating nonlinear response. 
•  Representing fractures on a coarse grid 
•  Applications to preconditioners. 
•  … 

  

∂2

∂t2
u−div(a∇u)=f

∇p−µΔv + k−1v=f,   div(v)=0



Nonlinear problems. Multiscale 
Empirical Interpolation 

• The residual on the fine grid: R(u,ν,µ)=0.
• Newton method requires the calculations of Jacobians J(u,ν,µ) and R(u,ν,µ).
• How can we calculate the nonlinear functions without incurring the cost of the 
   fine grid calculation in the online stage?
  
• Empirical Interpolation Technique (Chaturantabut and Sorensen, 2010): 
   (1) Compute modes for the approximation  R(u)
   (2) Define spatial points that can be used to approximate

          R(u) ≈ di (u)Ψ i
i
∑ ,  where di (u)'s are defined based on a few locations.

  



Nonlinear problems. Multiscale 
Empirical Interpolation using 

GMsFEM 
• Divide the computation of nonlinear function into coarse regions 

R(u)=R ziφi
i
∑
"

#
$

%

&
'= Θωi

Rωi
(Φωi zωi )

i
∑

•  Multiscale POD for finding the empirical modes
(RT

ωi
ARωi

)Ψωi = Λ(RT
ωi
MRωi

)Ψωi

for A and M  that depend on multiscale conductiviy field.
•  Evaluate the contribution of nonlinear function in each coarse region inexpensively
Rωi

(Φωi zωi ) ≈ Ψωi d(zωi )
  



Numerical Result 
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Conclusions and current work 

•  Local multiscale methods.  
•  Generalized MsFEM. Oversampling. Examples 
•  Mixed, Discontinuous Galerkin,… 
•  Nonlinear problems 
•  Aposteriori error estimates 
•  Applications to two-phase, wave equations, 

Brinkman,.. 
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Thank You ! 
Questions? 
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