#### Multiscale Model Reduction for flows in heterogeneous porous media

Yalchin Efendiev Math and ISC, Texas A&M University and Numerical Porous Media SRI Center, KAUST

# Introduction

• Multiple scales, complex heterogeneities, high contrast.





- It is prohibitively expensive to resolve all scales and uncertainties. Some types of reduced models are needed.
- Our objective is the development of reduced-order models

#### Reduced-Order Modeling Concept



#### Reduced/coarse models Numerical homogenization 0 С Α fine coarse Multiscale (on a coarse grid) methods

 Uses global snapshots and find best n-dimensional subspace based on, e.g., POD, BT,...

G

0

В

Α

#### Reduced-order model in a scale-separation case.

$$-\operatorname{div}\left(k\left(x,\frac{x}{\varepsilon}\right)\nabla u\right)=f(x), \text{ where } k(x,y) \text{ is periodic in } y, y = \frac{x}{\varepsilon}.$$

$$\hat{u}(x,x/\varepsilon) = u_0(x) + \varepsilon N(x,y) \cdot \nabla_x u_0, \text{ where } N(x,y) \text{ is periodic in } y \text{ and solves}$$

$$\operatorname{div}_y(k(x,y)(\nabla_y N+I)) = 0 \text{ in } Y$$

$$\operatorname{div}_y(k(x,y)(\nabla_y N+I)) = 0 \text{ in } Y$$

$$\operatorname{Representative Volume Element:} \operatorname{Macroscopic regions}$$

$$-\operatorname{div}(k^*(x)\nabla u_0) = f(x)$$

$$k^{*}(\mathbf{x}) = \frac{1}{|Y|} \int_{Y} k(\mathbf{x}, \mathbf{y}) (\nabla_{\mathbf{y}} \mathbf{N} + \mathbf{I}) d\mathbf{y}$$
$$\| u(\mathbf{x}) - \hat{u}(\mathbf{x}, \mathbf{x}/\varepsilon) \|_{H^{1}(D)} \leq C\sqrt{\varepsilon}$$

#### Reduced-order model in a scale-separation case. Homogenization



 $\nabla_{\mathbf{x}} \hat{u}_{\varepsilon}(x) \approx \nabla_{\mathbf{x}} u_0(x) + \nabla_{\mathbf{y}} N(x, y) \cdot \nabla_{\mathbf{x}} u_0 \approx \left( \mathbf{I} + \nabla_{\mathbf{y}} N(x, y) \right) \cdot \xi$ where  $\xi = \nabla_{\mathbf{x}} u_0(x) \approx \text{const.}$ 

This shows that the solution can be approximated in each coarse region using very few (in 2D) "degrees of freedom".

For some non-periodic cases, e.g., when  $k = k(x/\varepsilon, \omega)$  is homogeneous and ergodic, large Representative Volumes are needed (and periodic boundary conditions can be replaced by Dirichlet or Neumann, e.g., Bourgeat and Piatnitski, 2003).

#### Numerical homogenization



In general,  $k^*$  can be computed by: (1)  $L_k(\phi_i) = 0$  in K,  $\phi_i = b_i$  on  $\partial K$ ; (2)  $L_{k^*}(\phi_i^*) = 0$  in K,  $\phi_i^* = b_i$  on  $\partial K$ ; (3) Min.  $k^* = \arg \min \sum_i |E_i(\phi_i) - E_i^*(\phi_i^*)|$ 

#### Scale separation issues

- Many applications don't have scale separation and distinct features need to be modeled separately
- We want to find a reduced dimensional representation of the solution space on a coarse grid
- We use multiscale finite element concepts.
- "Optimal dimensional" coarse spaces are studied in preconditioners (joint work with Galvis, 2009, 2010)



Localizable features

## Multiscale FE methods\*.

• We look for a reduced approximation of fine-scale solution  $u = \sum_{i=1}^{n} u_i \phi_i$ 



\*. Babuska and Osborn, 1983; Hou and Wu, 1997

## Multiscale FE methods.

•  $u = \sum_{i} u_i \Phi_i$ , where  $u_i$  are found by a "Galerkin substitution" (Babuska et al. 1984, Hou and Wu, 1997),

 $\left\langle L\left(\sum_{i} u_{i} \Phi_{i}\right), \Phi_{j} \right\rangle = \left\langle f, \Phi_{j} \right\rangle$ . Integrals can be approximated for scale separation case.



#### Scale separation. Boundary conditions

- Numerical homogenization is similar to MsFEM with one basis per coarse node
- Local boundary conditions need to contain "correct" structure of small-scale heterogeneities.



• Piecewise linear boundary conditions result to large discrepancies near the edges of coarse blocks

Error  $\propto (\frac{\varepsilon}{H})^{\beta}$ , where  $\varepsilon$  is a physical scale and H is the coarse mesh size,  $H \gg \varepsilon$ .

# Oversampling

 To reduce the effects of artificial local boundary conditions, oversampling techniques are developed and analyzed (Hou and Wu 1997, Efendiev, Hou, and Wu 1999, Gloria 2010,...)



•  $\Phi_i = \sum c_{ij} \Phi_j^{ovs}$  with some constraints on  $\Phi_j$ , e.g.,  $\Phi_j(x_i) = \delta_{ij}$ . Here  $\Phi_i^{ovs}$  are oversampling basis functions defined on S

- basis functions defined on S.
- These methods can have large errors. How can we enrich spaces in a systematic way?

#### General Multiscale Model Reduction Framework (GMsFEM)\*



Example. 
$$-\operatorname{div}(k(x;\mu)\nabla p) = f, \quad \mu \in \Lambda, \quad k(x;\mu) = \sum_{i} k_q(x)\Theta_q(\mu)$$

\*Efendiev, Galvis, and Wu, JCP 2011 and Efendiev, Galvis, Hou, Generalized Multiscale Finite Element Method, JCP 2013

#### GMsFEM



*Output: Reduced dimensional offline space and downscaling operators* 

#### (Local) Multiscale model reduction.



# **Snapshot space**

The snapshot space consists of unit vectors. Limitations: no oversampling, difficult to impose special properties
No parameter case: L(ψ<sup>ω<sub>i</sub></sup><sub>i</sub>)=0 in ω<sub>i</sub>
ψ<sup>ω<sub>i</sub></sup><sub>i</sub> = δ<sub>i</sub> in ∂ω<sub>i</sub>

# **Snapshot space** • Oversampling: $L(\psi_i^{\omega_i^+})=0$ in $\omega_i^+$ , $\psi_i^{\omega_i^+}=\delta_i$ in $\partial \omega_i^+$ • Oversampling: $L(\psi_i^{\omega_i^+})=0$ in $\omega_i^+$ , $\psi_i^{\omega_i^+}=R_i$ in $\partial \omega_i^+$ , where R<sub>i</sub> is i.i.d. Gaussians.

Fewer snapshots are computed.

$$V_{\text{snap}}^{\omega_i} = \text{Span}\{\psi_j^{\omega_i}\}$$



### **Offline space**

We would like to find a subspace of  $\Psi_{\omega_i}^{\text{snap}} = \text{span}\{\psi_1^{\omega_i}, ..., \psi_{M_{\text{snap}}}^{\omega_i}\}$  such that  $m_{\omega_i}(u-u_0) \le \delta a_{\omega_i}(u-u_0)$  for bilinear forms m(•) and a(•) and small  $\delta$ .

Local spectral problems are motivated by analysis and depends on global discretization, smoothness of the solution ( $\varepsilon$ ), snapshots...

Define 
$$R_{snap} = [\psi_1^{snap}, ..., \psi_{M_{snap}}^{snap}]$$
 (e.g.,  $R_{snap} = I$  for Choice 1) and  
 $A^{off} = (R_{snap})^T A R_{snap}, M^{off} = (R_{snap})^T M R_{snap}$   
Example:  $\psi^T M^{off} \phi := "\int_{\omega_i} \tilde{k}(x) \psi \phi ", \psi^T A^{off} \phi := "\int_{\omega_i} k(x) \nabla \psi \cdot \nabla \phi "$   
Offline space construction is based using "dominant" eigenvectors of:  
 $A^{off} \Psi_k^{off} = \lambda_k M^{off} \Psi_k^{off}$ 

#### A coarse space construction. Example.







• Start with initial basis functions  $\Phi_i$  and compute  $\tilde{k} = \sum k \nabla \Phi_i \cdot \nabla \Phi_i$ .

• For each  $\omega_i$ , solve local spectral problem  $-\operatorname{div}(k\nabla \psi_i) = \lambda_i \tilde{k} \psi_i$  (motivated by analysis) and choose "small" eigenvalues and corresponding eigenvectors.



Note that "special" eigenvalue problems are used.

#### A coarse space construction. Example



•  $\Phi_i$  are multiscale FEM functions -  $\tilde{k} = \sum k |\nabla \Phi_i|^2$  (choice of init. basis is important)

• 
$$-\operatorname{div}(\mathbf{k}\nabla\psi_{i}) = \lambda_{i}\tilde{\mathbf{k}}\psi_{i}$$

• Identify  $\lambda_1 = 0 \le \lambda_2 \le \dots \le \lambda_n$ .



• "Gap" in the spectrum --- 
$$\frac{\int \vec{k} | \vec{v} \psi |}{\int \tilde{k} \psi^2}$$
.



• For harmonic snapshots, the fast decay can be achieved by using oversampling in the space of harmonic snapshots (Babuska and Lipton, MMS 2011)

#### A coarse space construction. Example

• If there are many inclusions, we may have many basis functions. We know "many isolated inclusion domain" can be homogenized (one basis per node).



• Channels vs. inclusions.



Coarse grid with isolated inclusions and channels

k\*



Coarse grid without isolated inclusions

#### **Coarse space construction**

• Coarse space:  $V_0 = Span \left\{ \Phi_i \psi_l^{\omega_i} \right\}$ 



- Condition number of two-level (optimal) preconditioners  $1/\Lambda_*$  (with Galvis, SIAM MMS 2010)
- Coarse-grid approximation (under some assumptions)  $H^{\gamma} / \Lambda_{*}$  (with Galvis and Wu, JCP, 2010)
- Multilevel preconditioners (optimal for high-contrast problems) (with Galvis and Vassilevski, 2010

# **Online space**

- For parameter-dependent problems, the offline space is constructed using some selected values of  $\mu_i$ .
- In the online stage, for each new  $\mu$ , the local spectral problem is solved to define multiscale basis functions.

# Mixed GMsFEM

• Mixed formulation is needed for the mass conservation

 $k^{-1} v + \nabla p = 0$ , div(v) = f



# Mixed GMsFEM

Take 
$$\Psi_{j}^{i,snap} \coloneqq v_{j}^{(i)}$$
 and form  $V_{snap}^{(i)} = span_{j} \{\Psi_{j}^{i,snap}\}$ 

For each edge, the local spectral problem is

$$a_{i}(v,w) = \lambda m_{i}(v,w), \forall w \in V_{\text{snap}}^{(i)}$$
$$m_{i}(v,w) = \int_{\omega_{i}} k^{-1}v \cdot w, \qquad a_{i}(v,w) = \int_{E_{i}} [p_{v}][p_{w}]$$

By selecting dominant eigenvectors, we form the offline space for the velocity

$$V_{off} = span\{\Psi_j^{i,off}\}.$$

The offline space for pressure is piecewise constant functions.

# Mixed GMsFEM

Theorem.

$$\int_{D} k^{-1} |v_h - v_{ms}|^2 \quad \prec \Lambda^{-1} \sum_{i} a_i(\hat{v}, \hat{v}) + O(H)$$
$$\Lambda = \min_{1 \le i \le N_0} \lambda_{l_i+1}^{(i)}$$

Remark. The eigenvalue problem can be considered via an optimization point.

## **Numerical Results**







(a)  $\kappa_1$ 

(b)  $\kappa_2$ 

| (c) | $\kappa_3$ | in | $\log_{10}$ | scale |
|-----|------------|----|-------------|-------|

| Basis per edge | Error(v) |
|----------------|----------|
| 2              | 0.06     |
| 3              | 0.03     |
| 4              | 0.013    |
| 5              | 0.054    |

Convergence is correlated to  $1/\Lambda$ 

#### Applications to two-phase flow and transport

• Multi-phase flow and transport. E.g., two-phase -  $\nabla \cdot (\lambda(S)k\nabla p) = q$ ,  $S_t + \mathbf{v} \cdot \nabla f(S) = 0$ , where  $\mathbf{v} = -\lambda(S)k\nabla p$ .

A workflow: offline - construct multiscale basis functions. (1) solve pressure equation (with mass conservative discretization) on a coarse grid, compute fine-scale velocity (adaptively);
(2) solve the saturation equation on a fine.

• Multiscale basis functions are not updated throughout simulations

## Numerical results

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.2 0.4 0.6 0.8

reference





4 basis per edge



(a) Relative  $L^2$  error = 4.2%

(b) Relative  $L^2$  error = 4.8%

0.7



0.5

0.3

0.2

(c) Relative  $L^2$  error = 5.7%

#### **Numerical Results**







Error~7%

30

# Mixed GMsFEM. Oversampling.

• Oversampling is important to reduce the degrees of freedom.

- 1. We generate "harmonic snapshots" in  $\omega_i^*$
- 2. Use their traces on  $E_i$  and perform a local spectral decomposition
- 3. Extend the dominant traces to  $\omega_i$



For problems with scale separation, the snapshots in the neighborhood of  $E_i$  have a low dimensional structure.

 $\nabla_{\mathbf{x}} \hat{u}_{\varepsilon}(x) \approx \nabla_{\mathbf{x}} u_0(x) + \nabla_{\mathbf{y}} N(x, \mathbf{y}) \cdot \nabla_{\mathbf{x}} u_0$ 

# **Oversampling results**

periodic

| Coarse grid | $10 \times 10$ |                  | $20 \times 20$ |                  |
|-------------|----------------|------------------|----------------|------------------|
| dof per E   | Oversampling   | w/o oversampling | Oversampling   | w/o oversampling |
| 1           | 0.0324         | 0.3422           | 0.0573         | 0.6733           |
| 2           | 0.0294         | 0.0222           | 0.0283         | 0.0057           |
| 3           | 0.0214         | 0.0214           | 0.0068         | 0.0054           |
| 4           | 0.0214         | 0.0214           | 0.0056         | 0.0054           |

Non-periodic

| -           | -            |                  |                  | -                |
|-------------|--------------|------------------|------------------|------------------|
|             | Oversampling |                  | w/o oversampling |                  |
| dof per $E$ | Err wrt fine | Err wrt snapshot | Err wrt fine     | Err wrt snapshot |
| 1           | 0.1336       | 0.1333           | 0.7640           | 0.7718           |
| 2           | 0.0400       | 0.0345           | 0.0991           | 0.0979           |
| 3           | 0.0234       | 0.0106           | 0.0593           | 0.0561           |
| 4           | 0.0213       | 0.0046           | 0.0407           | 0.0353           |

# Adaptive strategy

• The multiscale basis functions are added in each coarse region using an error indicator Adaptive enrichment: Choose  $0 < \theta < 1$ .

- 1. Find  $u_{ms}^{m} \in V_{off}^{m}$ ,  $a(u_{ms}^{m}, v) = (f, v)$ ,  $\forall v \in V_{off}^{m}$
- 2. For each coarse region  $\omega_i$  compute

$$\eta_i^2 = \begin{cases} \|Q_i\|^2 (k_{\min,i} \lambda_{l_i+1}^{\omega_i})^{-1} \\ \|R_i\|^2 (\lambda_{l_i+1}^{\omega_i})^{-1} \end{cases}, \quad \eta_1^2 \ge \dots \ge \eta_N^2 \end{cases}$$

- 3. Choose the smallest integer k s.t.,  $\theta \sum_{i=1}^{N} \eta_i^2 \le \sum_{i=1}^{\kappa} \eta_i^2$
- 4. Enrich the space by adding next modes

We show (Chung, Efendiev, Li, JCP 2014)  
$$\|\mathbf{u}-\mathbf{u}_{ms}^{m+1}\|_{V}^{2} + c\sum_{i=1}^{N} \mathbf{S}_{m+1}(\omega_{i})^{2} \leq \delta \left( \|\mathbf{u}-\mathbf{u}_{ms}^{m}\|_{V}^{2} + c\sum_{i=1}^{N} \mathbf{S}_{m}(\omega_{i})^{2} \right)$$

for some  $\delta$  that depends on  $\theta$ 

٦

#### Adaptive results



Dimension distributions of the offline space for theta=0.7

#### Adaptive for SIPDG discretization



#### Inexpensive snapshot computations

 Random boundary conditions on oversampled regions. To compute n basis, we choose n+4 snapshots

| Dim | Ratio (%) | All (%) | Random (%) |
|-----|-----------|---------|------------|
| 536 | 6.81      | 0.71    | 1.33       |
| 931 | 9.62      | 0.5     | 0.66       |



- Similar (to using all snapshots) convergence rate can be shown
- More accurate non-random snapshot spaces can be designed at a higher cost
- For adaptivity, each new iterate requires computing a few extra snapshots

# Some applications



- Brinkman flow  $\nabla p \mu \Delta v + k^{-1}v = f$ , div(v) = 0
- Elasticity equations and elastic wave equations using Symmetric Interior Penalty Discontinuous Galerkin
- Applications to multilevel MC and multilevel MCMC
- Nonlinear problems (nonlinear diffusion, monotone operators). Estimating nonlinear response.
- Representing fractures on a coarse grid
- Applications to preconditioners.

## Nonlinear problems. Multiscale Empirical Interpolation

- The residual on the fine grid:  $R(u,v,\mu)=0$ .
- Newton method requires the calculations of Jacobians  $J(u,v,\mu)$  and  $R(u,v,\mu)$ .
- How can we calculate the nonlinear functions without incurring the cost of the fine grid calculation in the online stage?
- Empirical Interpolation Technique (Chaturantabut and Sorensen, 2010):
  (1) Compute modes for the approximation R(u)
  - (2) Define spatial points that can be used to approximate

 $R(u) \approx \sum_{i} d_i(u) \Psi_i$ , where  $d_i(u)$ 's are defined based on a few locations.

## Nonlinear problems. Multiscale Empirical Interpolation using GMsFEM

• Divide the computation of nonlinear function into coarse regions

$$\mathbf{R}(\mathbf{u}) = \mathbf{R}\left(\sum_{i} z_{i} \phi_{i}\right) = \sum_{i} \Theta_{\omega_{i}} \mathbf{R}_{\omega_{i}} (\Phi^{\omega_{i}} z^{\omega_{i}})$$

• Multiscale POD for finding the empirical modes  $(\mathbf{R}_{\omega_i}^T A \mathbf{R}_{\omega_i}) \Psi^{\omega_i} = \Lambda (\mathbf{R}_{\omega_i}^T M \mathbf{R}_{\omega_i}) \Psi^{\omega_i}$ 

for A and M that depend on multiscale conductivity field.

• Evaluate the contribution of nonlinear function in each coarse region inexpensively

 $\mathsf{R}_{\omega_i}(\Phi^{\omega_i} z^{\omega_i}) \approx \Psi^{\omega_i} d(z^{\omega_i})$ 



# Conclusions and current work

- Local multiscale methods.
- Generalized MsFEM. Oversampling. Examples
- Mixed, Discontinuous Galerkin,...
- Nonlinear problems
- Aposteriori error estimates
- Applications to two-phase, wave equations, Brinkman,..

#### Collaborators

- V. Calo (KAUST)
- E. Chung (CUHK)
- J. Galvis (UNC)
- T. Hou (Caltech)
- G. Li (TAMU)
- C.S. Lee (TAMU)
- M. Presho (TAMU)

Thank You ! Questions?