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Introduction

* Multiple scales, complex heterogeneities, high contrast.
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@ High/Low conductivity regions O Background Conductivity=1

 lItis prohibitively expensive to resolve all scales and
uncertainties. Some types of reduced models are

needed.
* Qur objective is the development of reduced-order
models



Reduced-Order Modeling Concept

Boundary cond., uncertainties,...

N

L (u)=f

Fine model

Measurements

Approximately
equal




Reduced/coarse models

« Numerical homogenization

coarse

- Multiscale (on a coarse grid) -
methods

« Uses global snapshots and find best n-dimensional
subspace based on, e.g., POD, BT,...

—>0O0OMrom



Reduced-order model in a scale-separation case.

—div(k(x,f)Vu)=f(x), where k(x,y) is periodiciny,y = 2
€ €

u(xx/e)=u,(x)+eN(x,y) V. u,, where N(x,y) is

periodic in y and solves A

div, (k(x.y)(V,N+1))=0 in Y

~div(k  (x)Vu, )=f(x)

, 1
k (x)_m { k(x,y)(V,N+1) dy

<C\/E

lu(x) - ix x/e)ll,, <



Reduced-order model in a scale-separation case.
Homogenization

—diV(k(X,f)Vu)=f(X). Define y = X
£ 3

u, (x)=u,(x)+ EN()C,E) Vi,
£

In each coarse region, B Representative Volume Element; - Macroseopic regions
Vi, (x)=V,uy(x)+V N (x,y) V., =(I+V N (x,y))- &

where £=V u,(x) = const.

This shows that the solution can be approximated in each

coarse region using very few (in 2D) "degrees of freedom".
For some non-periodic cases, €.g., when k = k(x/¢,w) 1s homogeneous and ergodic,
large Representative Volumes are needed (and periodic boundary conditions can be

replaced by Dirichlet or Neumann, e.g., Bourgeat and Piatnitski, 2003).
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Numerical homogenization

& div(kV¢,)=0 1n K
¢, = x, on 0K

div(kVy,)=0 mn K
¢, = x, on 0K
= [(kve) (98,

In general, k* can be computed by: (1) L (¢)=0inK, ¢. =b. on dK;
@ L_.(4)=0inK, ¢;=b, on dK; (3)Min. k" =argmin ¥'|E (¢,) - E;(¢))|



Scale separation issues

Many applications don’t have scale separation and
distinct features need to be modeled separately

We want to find a reduced dimensional
representation of the solution space on a coarse grid
We use multiscale finite element concepts.

“Optimal dimensional” coarse spaces are studied in
preconditioners (joint work with Galvis, 2009, 2010)

Non-localizable features

\Global solution flux~k(ql-pl j

pl

Coarse block o2

q2 The ratio of
multiscale basis
fluxes are related
in channels

I
i

p3

Global solution flux~k(q3-p3)

Global solution flux~k(q2-p2))|
ccccc block

Localizable features



Multiscale FE methods®.

fine
* We look for a reduced approximation of fine-scale solution u = 2 uQ,
=1
coarse

asu = 2 u, @,, such that ||u-u*| is small. Goal is to find ®.,.

=1

local
S ‘

L, (®,;) =0 in local region

¢ L (®)=0in w, ®, =D’ ondw.
* L(u) =-div(kVu)

*, Babuska and Osborn, 1983; Hou and Wu, 1997



Multiscale FE methods.

* U= E u.®., where u, are found by a "Galerkin substitution" (Babuska et al. 1984, Hou and Wu, 1997),

l

L E u®, |, @, )= < f,® j>. Integrals can be approximated for scale separation case.
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Scale separation. Boundary conditions

« Numerical homogenization is similar to MSFEM with
one basis per coarse node

 Local boundary conditions need to contain “correct”
structure of small-scale heterogeneltles

 Piecewise linear boundary conditions result to large
discrepancies near the edges of coarse blocks

€ : : : :
Error o (E)ﬁ , where ¢ 1s a physical scale and H is the coarse mesh size, H >> ¢.



Oversampling

 To reduce the effects of artificial local boundary
conditions, oversampling techniques are
developed and analyzed (Hou and Wu 1997,
Efendiev, Hou, and Wu 1999, Gloria 2010,...)

SRR\
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Coarse\grid

Oversampled
domain

ORE E ¢, ®,;”" with some constraints on @ ;, e.g., @ (x,) = 9. Here &, are oversampling

basis functions defined on S.

« These methods can have large errors. How can we
enrich spaces in a systematic way?



General Multiscale Model Reduction
Framework (GMsFEM)*

source terms
boundary conditions
f Forward Model

L (u)=f
external

parameters
m

Example. —div(k(x;u)Vp)=1f, ueA, kx;u)= Ekq (X)@q (u)

*Efendiev, Galvis, and Wu, JCP 2011 and Efendiev, Galvis, Hou, Generalized Multiscale Finite Element Method, JCP 2013



OFFLINE

Generate a coarse grid

Not needed for
parameter-independent
problems

For each coarse region

Compute local
snapshots

Reduce the dimension Solve a coarse-scale problem

of local snapshot space
using a spectral
decomposition

Iterative process (if needed)

QOutput: Reduced dimensional
offline space and downscaling operators



(Local) Multiscale model reduction.
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Snapshot space

* The snapshot space consists

napshot space consists >
of unit vectors. L /\

Limitations: no oversampling, dif/ﬁc’iﬂ—t to

impose special properties

* No parameter case: L(y"*)=0 in o, e



Snapshot space

e Oversampling: L(z/};"?)ZO in o, z/J;”i+ =0, in dw;

e Oversampling: L(ijr)=0 in w’, ij? =R, in aa); /\/\/\

where RJ. 1s 1.1.d. Gaussians.

Fewer snapshots are computed.

Vo = Span{y;"}



Offline space

We would like to find a subspace of W™ =span{y",...,3, } such that

m_(u-u )<o0 a_(u-u,) for bilinear forms m(*) and a(*) and small 9.

Local spectral problems are motivated by analysis and depends

on global discretization, smoothness of the solution (¢), snapshots...

Define R~ =[ P Snap] (e.g., R ~=Ifor Choice 1) and

1
nap

Aoff _ (Rsnap)TA R Moff _ (R )

snap ’ snap snap
Example ?./)TMOff¢ _ nfk(x)w ¢n I/JTAOff¢ _ "fk(X)VI/J V¢"

Offline space construction is based using "dominant” elgenvectors of:
off yyroff off yyroff
AP =AM W



A coarse space construction. Example.

g |

* Start with initial basis functions ®. and compute k = EkV(I) Vo..

* For each w,, solve local spectral problem -div(kVy,) = )Likzpi (motivated by analysis) and

choose "small" eigenvalues and corresponding eigenvectors.

III

Note that “specia
problems are used.

eigenvalue



A coarse space construction. Example

* ®_ are multiscale FEM functions - k = Ek | VO, * (choice of init. basis is important)

—3

o -div(kVy)=Aky o
*Identify A=0<A =<..<A .

* There are 2 small (inversely o to high-contrast) eigs
for multiscale ®, and 6 for bilinear @,

k|Vy
* "Gap" in the spectrum --- f Vvl :

[l

* For harmonic snapshots, the fast decay can be achieved by using oversampling in
the space of harmonic snapshots (Babuska and Lipton, MMS 2011)



A coarse space construction. Example

* If there are many inclusions, we may have many basis functions. We

know "many isolated inclusion domain" can be homogenized (one basis per node).

k k*
B &
& &
g & é
Fes &
Coarse grid with isolated Coarse grid without isolated inclusions

inclusions and channels



Coarse space construction

* Coarse space: V, = Span {(I) 1.1//1‘"’}

* Condition number of two-level (optimal) preconditioners - 1/A, (with Galvis, SIAM MMS 2010)
* Coarse-grid approximation (under some assumptions) - H” / A, (with Galvis and Wu, JCP, 2010)

* Multilevel preconditioners (optimal for high-contrast problems) (with Galvis and Vassilevski, 2010



Online space

* For parameter-dependent problems, the offline space is constructed using some
selected values of ..
* In the online stage, for each new u, the local spectral problem is solved

to define multiscale basis functions.



Mixed GMsFEM

 Mixed formulation is needed for the mass conservation

k™' v+ Vp=0, div(v)=f

-1 ) ()
k™ v;’ + Vp;"=0in o,

div(v)=a in o,

M. — 50
v m=0," onE,

(i) . on adonal 0000
6j =1 on j-th fine edge I

r-—T7"7 I
\\\\\

——————————
\\\\\

v n,;=0 in do,

24



Mixed GMsFEM

Take ‘P;’s“ap = V?) and form V =span j{‘PE’S“ap}

snap

For each edge, the local spectral problem is

a.(v,w)=Am. (v,w), Vwe V"

snap

m,(v.w)= [k7'v-w,  a,(v.w)=[Ip,llp,]

By selecting dominant eigenvectors, we form the offline space for the velocity
1,0ff
Vi =span{W¥ ;" }.
The offline space for pressure is piecewise constant functions.

25



Mixed GMsFEM

Theorem.

[k v, =v Bo< AT Y a,(3,0) + OH)
D i

. (1)
A= min, )Ll,.+1

Remark. The eigenvalue problem can be considered via an optimization point.

26



Numerical Results

(@) K1

Basis per edge
2

3
4
)

(b) K2

Error(v)
0.06
0.03
0.013
0.054

Convergence is correlated to 1/A

(c) k3 inlogig scale

27



Applications to two-phase flow and transport
* Multi-phase flow and transport. E.g., two-phase - V- ()L(S)kVp) =q, S, +Vv-VI(§)=0,
where v=-A(S)kVp.
* A workflow: offline - construct multiscale basis functions. (1) solve pressure equation (with
mass conservative discretization) on a coarse grid, compute fine-scale velocity (adaptively);

(2) solve the saturation equation on a fine.

* Multiscale basis functions are not updated throughout simulations



Numerical results

reference

2 basis per edge

4 basis per edge

(a) Relative L? error = 4.2% (b) Relative L? error = 4.8% (c) Relative L? error = 5.7%
29



Numerical Results

40 layers of SPE10 permeability field

Fine scale simulation Mixed GMsFEM simulation

Error~7%

30
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Mixed GMsFEM. Oversampling.

Oversampling is important to reduce the degrees of freedom.

Ta

o g——

t

spec

+
l

1. We generate "harmonic snapshots" in w;

2. Use their traces on E; and perform a local
decomposition

3. Extend the dominant traces to w,

For problems with scale separation, the snapshots in

the neighborhood of E; have a low dimensional structure.

Vi, (x)=V u,(x)+ VyN(x,y) V. u,

31



periodic

Non-periodic

Oversampling results

Coarse grid 10 x 10 20 x 20
dof per I Oversampling | w/o oversampling | Oversampling | w/o oversampling
1 0.0324 0.3422 0.0573 0.6733
2 0.0294 0.0222 0.0283 0.0057
3 0.0214 0.0214 0.0068 0.0054
4 0.0214 0.0214 0.0056 0.0054
Oversampling w/o oversampling
dof per I/ || Err wrt fine | Err wrt snapshot | Err wrt fine | Err wrt snapshot

1 0.1336 0.1333 0.7640 0.7718

2 0.0400 0.0345 0.0991 0.0979

3 0.0234 0.0106 0.0593 0.0561

4 0.0213 0.0046 0.0407 0.0353

32




Adaptive strategy

* The multiscale basis functions are added in each coarse region using an error indicator
Adaptive enrichment: Choose 0<6<1.
l.Findu] € VL, a(u),v)=(f,v), VvEVL
2. For each coarse region w, compute
2 w; -1
2 {” Qi ” (kmin,illi-:-l)

2 2
, N =...=1
IR IP (A% 1 Y

i+

N k
3. Choose the smallest integer k s.t., HE n’ = E n’
i=1 i=1

4. Enrich the space by adding next modes
We show (Chung, Efendiev, Li, JCP 2014)
N N
w2 I +¢ Y S, @,) < (5( lo-w2 I +¢ Y S, (@)
i=1 i1

for some O that depends on 6



Adaptive results

X

- N W H» OO N o ©

0 0.2 0.4 0.6 0.8

y HEN 2 T

0 0.2 0.4 0.6 0.8 1

Dimension distributions of the offline space for theta=0.7



Adaptive for SIPDG discretization

10 L T T T T T ]
5 enrich V1
— enrich V! V2]
————— oversample
uniform

exact

1 O_ 1 1 1 1 1
3.1 3.3 3.5 3.7 3.9

35



Inexpensive snapshot computations

« Random boundary conditions on oversampled regions. To
compute n basis, we choose n+4 snapshots

Bifii Ratio (%) All (%) Random (%) /\/\/\

536 6.81 0.71 1.33 I
931 9.62 0.5 0.66 [,;[[
A

« Similar (to using all snapshots) convergence rate can be
shown

* More accurate non-random snapshot spaces can be
designed at a higher cost

« For adaptivity, each new iterate requires computing a few
extra snapshots 36




Some applications

* Acoustic Wave equations 8_2 u—div(aVu)=f
dt

Distance (km) Distance (m) Distance (m)

0

Distance (m)

0 500 1000 0 500

0 0
500. .
1000 ’

 Brinkman flow Vp — uAV + k_1V=f, diV(V)=O

« Elasticity equations and elastic wave equations using Symmetric
Interior Penalty Discontinuous Galerkin

* Applications to multilevel MC and multilevel MCMC

* Nonlinear problems (nonlinear diffusion, monotone operators).
Estimating nonlinear response.

« Representing fractures on a coarse grid
* Applications to preconditioners.

500

3
=3
<0.
B
53
[=]

depth (m)
depth (m)

o
N
depth (m)

1000



Nonlinear problems. Multiscale
Empirical Interpolation

* The residual on the fine grid: R(u,v, u)=0.
* Newton method requires the calculations of Jacobians J(u,v,u) and R(u,v, u).
* How can we calculate the nonlinear functions without incurring the cost of the

fine grid calculation in the online stage?

* Empirical Interpolation Technique (Chaturantabut and Sorensen, 2010):
(1) Compute modes for the approximation R(u)

(2) Define spatial points that can be used to approximate

R(u) = Edi(u)‘l’i, where d.(u)'s are defined based on a few locations.



Nonlinear problems. Multiscale
Empirical Interpolation using
GMsFEM

* Divide the computation of nonlinear function into coarse regions

2Z,-¢,-) = 2@60[ Rwi ((I)wizwi)
* Multiscale POD for finding the empirical modes
(RZ),.ARCU,. WP = A(RCTOiMRwi YW

for A and M that depend on multiscale conductiviy field.

R(u)=R

* Evaluate the contribution of nonlinear function in each coarse region inexpensively

R, (9"2") = W"d(")
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Conclusions and current work

Local multiscale methods.

Generalized MsFEM. Oversampling. Examples
Mixed, Discontinuous Galerkin,...

Nonlinear problems

Aposteriori error estimates

Applications to two-phase, wave equations,
Brinkman,..
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Thank You !
Questions?



