Geometry modeling of open-cell foams for efficient fluid flow and heat transfer computations using modified Kelvin cells

E. Werzner, M.A.A. Mendes, J. Storm, M. Laurinat, S. Ray, D. Trimis

Chair of Gas and Heat Technology
Institute of Thermal Engineering
Gustav-Zeuner-Str. 7
09596 Freiberg
Germany

September 29th - October 3rd, 2014
International Conference on Numerical and Mathematical Modeling of Flow and Transport in Porous Media, Dubrovnik, Croatia
Outline

(1) Introduction
 CFD modeling of heat transfer and fluid flow in open-cell foams

(2) Geometry modeling
 Analysis of the reference foam
 Generation of modified Kelvin cells

(3) Determination of effective properties
 Finite volume method for effective thermal conductivity
 Lattice-Boltzmann method for permeability

(4) Results
 Representative volume element (RVE)
 Effective thermal conductivity
 Permeability

(5) Conclusions & outlook
CFD modeling of open-cell foams

Two major classes of approaches

1. macroscopic modeling: volume-averaged equations using eff. properties
2. microscopic modeling: taking into account the intricate geometry
 → computationally expensive for the entire physical domain

Alternative method

- approximation of geometry using idealized structure with same geometric properties, e.g. array of cylinders, Weaire-Phelan structures, Kelvin cells, ...
- periodicity reduces the size of the computational domain
- allows extended parametric studies or complete resolution of small-scale structures

DNS inside idealized porous medium

\(\text{Re}_D = 400 \) [Werzner et al., 2013]
(1) Introduction
 CFD modeling of heat transfer and fluid flow in open-cell foams

(2) Geometry modeling
 Analysis of the reference foam
 Generation of modified Kelvin cells

(3) Determination of effective properties
 Finite volume method for effective thermal conductivity
 Lattice-Boltzmann method for permeability

(4) Results
 Representative volume element (RVE)
 Effective thermal conductivity
 Permeability

(5) Conclusions & outlook
Reference foam

- manufactured using the replica technique on the basis of a polyurethane sponge [Schwartzwalder and Somers, 1963]
- material: \(\text{Al}_2\text{O}_3 \) (\(k = 18.66 \text{ W/mK} \))
- dimensions: 121 x 121 x 58 mm\(^3\)
- pore density: 10 ppi
- voxel representation available from 3D computed-tomography scan (resolution \(\Delta x = 70 \mu\text{m} \))

selection considered for the simulations (\(718^3 \approx 370 \text{ million voxels} \))
Morphology of the reference foam

CT geometry analysis using 3D image analysis software MAVI

Results

- porosity: 85.56 %*
- number of pores: 11,693
- pore diameter: 4.77* ± 1.13 mm
- facets per pore: 15.08 ± 2.07
- av. strut width: 6.80 mm

(*parameters used for generation of Kelvin cells)

[Rößger and Jorschick, 2014]
Generation of modified Kelvin cells

The Kelvin cell [Thomson, 1887]

- polyhedron consisting of 14 faces: 8 hexagons and 6 squares
- space-filling unit-cell with lowest surface area
- resembles the polyhedra encountered in reticulate foams

Model generation

- three types are considered:
 - open square windows (o)
 - closed square windows (c)
 - half-closed square windows (hc)
- ligaments and closed faces are modeled by cylinders using implicit functions
- connections are rounded using the Blinn transformation [Storm et al., 2013]
Overview of considered Kelvin cells

<table>
<thead>
<tr>
<th>nr. of closed windows</th>
<th>0 [o]</th>
<th>6 [c]</th>
<th>3 [hc]</th>
</tr>
</thead>
<tbody>
<tr>
<td>pore diameter</td>
<td></td>
<td>4.77 mm</td>
<td></td>
</tr>
<tr>
<td>porosity</td>
<td>85.98 %</td>
<td>85.05 %</td>
<td>85.51 %</td>
</tr>
</tbody>
</table>

iso-surface representation

voxel mesh used for the simulations

(69 x 69 x 69)
(1) Introduction
 CFD modeling of heat transfer and fluid flow in open-cell foams

(2) Geometry modeling
 Analysis of the reference foam
 Generation of modified Kelvin cells

(3) Determination of effective properties
 Lattice-Boltzmann method for permeability
 Finite volume method for effective thermal conductivity

(4) Results
 Representative volume element (RVE)
 Effective thermal conductivity
 Permeability

(5) Conclusions & outlook
Modeling of fluid flow

Lattice-Boltzmann method (LBM)

- LBM is used to obtain solutions of the mass and momentum conservation equations
- Physical domain is discretized into a uniform voxel mesh
- Fluid flow is treated as movement of particle populations, which undergo consecutive streaming and collision processes over a discrete lattice
- Macroscopic properties are obtained as moments of particle distributions

Boundary conditions

- Periodicity on all domain boundaries
- No-slip on all solid voxels

Possible velocities in D3Q19 phase space around a single lattice node

Scaling of LBM code

- Intel Xeon E5-2630 V2
- Lattice updates/sec vs. # CPUs
- Data points for different numbers of CPUs (e.g., 1, 10, 100, 1000) showing a linear scaling trend.
Evaluation of permeability tensor and extreme values

Determination of permeability tensor

- evaluated at Darcy flow condition: \(\text{Re}_k = u_D \sqrt{\kappa/\nu} \leq 1 \ (\approx 0.2) \)
- Darcy’s law:

\[
\begin{bmatrix}
K_{xx} & K_{xy} & K_{xz} \\
K_{yx} & K_{yy} & K_{yz} \\
K_{zx} & K_{zy} & K_{zz}
\end{bmatrix}
\begin{bmatrix}
\frac{\partial p}{\partial x} \\
\frac{\partial p}{\partial y} \\
\frac{\partial p}{\partial z}
\end{bmatrix}
= -\mu
\begin{bmatrix}
\bar{u}_x \\
\bar{u}_y \\
\bar{u}_z
\end{bmatrix}
\]

Eigenvalues and eigenvectors

- eigenvalues are defined by a homogenous linear system:

\[
(K - \lambda I) \cdot \vec{v} = 0
\]
- solution consists of three eigenvalues \(\lambda \) and corresponding eigenvectors \(\nu \), which form an orthogonal system
- min., max. and average permeability are obtained as:

\[
\kappa_{\text{min}} = \min(\lambda) \quad \kappa_{\text{max}} = \max(\lambda) \quad \kappa_{\text{avg}} = \frac{1}{3} \sum \lambda
\]
Modeling of heat transfer and determination of ETC

Governing equation

- steady-state heat conduction equation for heterogeneous materials, without heat source:

\[
\nabla \cdot (k \nabla T) = 0
\]

Boundary conditions

- different temperatures on two opposite walls
- remaining walls adiabatic

Determination of effective thermal conductivity

- after convergence of the temperature field, the average steady-state heat flux is evaluated over a plane of the computational domain:

\[
q_{av}'' = \frac{\int q'' \, dA}{\int dA}
\]

- ETC is obtained using averaged Fourier’s law of heat conduction:

\[
q_{av}'' = k_{eff} \frac{T_h - T_c}{L}
\]
Outline

(1) Introduction
 CFD modeling of heat transfer and fluid flow in open-cell foams

(2) Geometry modeling
 Analysis of the reference foam
 Generation of modified Kelvin cells

(3) Determination of effective properties
 Finite volume method for effective thermal conductivity
 Lattice-Boltzmann method for permeability

(4) Results
 Representative volume element (RVE)
 Effective thermal conductivity
 Permeability

(5) Conclusions & outlook
Results: representative volume element (RVE)

- **Porosity**
- **Permeability**
- **ETC**

Length of the cubic partition L / d_{pore}

Relative error with respect to results of complete foam

- 0%
- 10%
- 20%
- 30%
- 40%
- 50%

Complete foam

Cubic partition

Geometry modeling of open-cell foams for efficient fluid flow and heat transfer computations using modified Kelvin cells
foam sample – velocity magnitude (1,0,0)

- inhomogenous distribution of velocity magnitude
- preferential paths with high velocities

Contour plot of velocity magnitude at a plane \(y = 25 \text{ mm} \)

Direction of pressure gradient \((1,0,0)\)
Kelvin cells – velocity magnitude and temperature (1,0,0)

<table>
<thead>
<tr>
<th>open (o)</th>
<th>closed (c)</th>
<th>half-closed (hc)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Velocity Magnitude
- 2.2
- 2
- 1.8
- 1.6
- 1.4
- 1.2
- 1
- 0.8
- 0.6
- 0.4
- 0.2
- 0

Temp
- 1.0
- 0.9
- 0.8
- 0.7
- 0.6
- 0.5
- 0.4
- 0.3
- 0.2
- 0.1
- 0.0

TU Bergakademie Freiberg | GWA / IWTT | E. Werzner et al. | NM2PorousMedia 2014

Geometry modeling of open-cell foams for efficient fluid flow and heat transfer computations using modified Kelvin cells
Comparison for permeability

<table>
<thead>
<tr>
<th>structure</th>
<th>permeability (10^{-7} m²)</th>
<th>minimum</th>
<th>maximum</th>
<th>average</th>
<th>av. error</th>
</tr>
</thead>
<tbody>
<tr>
<td>foam sample</td>
<td></td>
<td>1.37</td>
<td>2.25</td>
<td>1.77</td>
<td>-</td>
</tr>
<tr>
<td>Kelvin cell</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>open (o)</td>
<td></td>
<td>1.88</td>
<td></td>
<td></td>
<td>+6 %</td>
</tr>
<tr>
<td>closed (c)</td>
<td></td>
<td>1.73</td>
<td></td>
<td></td>
<td>+2 %</td>
</tr>
<tr>
<td>half-closed (hc)</td>
<td></td>
<td>1.81</td>
<td></td>
<td></td>
<td>-2 %</td>
</tr>
</tbody>
</table>

- foam exhibits anisotropy (Kelvin cells are isotropic)
- Kelvin cells with half-closed and closed windows give good prediction of average permeability
- effect of closed square windows is small
Comparison for effective thermal conductivity

<table>
<thead>
<tr>
<th>structure</th>
<th>effective thermal conductivity (W/mK)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>x</td>
</tr>
<tr>
<td>foam sample</td>
<td>0.91</td>
</tr>
<tr>
<td>Kelvin cell</td>
<td></td>
</tr>
<tr>
<td>open (o)</td>
<td>1.08</td>
</tr>
<tr>
<td>closed (c)</td>
<td>1.28</td>
</tr>
<tr>
<td>half-closed (hc)</td>
<td>1.18</td>
</tr>
</tbody>
</table>

- anisotropy of permeability and ETC correlate
- Kelvin cell with open windows gives best prediction of average ETC
- position of closed windows causes slight anisotropy for the half-closed Kelvin cells
(1) Introduction
 CFD modeling of heat transfer and fluid flow in open-cell foams

(2) Geometry modeling
 Analysis of the reference foam
 Generation of modified Kelvin cells

(3) Determination of effective properties
 Finite volume method for effective thermal conductivity
 Lattice-Boltzmann method for permeability

(4) Results
 Representative volume element (RVE)
 Effective thermal conductivity
 Permeability

(5) Conclusions & outlook
Conclusions

- accurate prediction of permeability and eff. thermal conductivity of open-cell foams require large computational domain: RVE ≈ (10 D_p)³
- optimal model structure depends on the property of interest:
 - eff. thermal conductivity: Kelvin cell with open windows (+2 %)
 - permeability: Kelvin cell w. half-closed windows (-2 %)
- idealized foam structures can reduce the computational effort by O(10³) or allow high-res simulations, e.g. for the DNS of turbulent flows

Outlook

- inclusion of additional geometric parameters to consider anisotropy:
 - anisotropy of pores by elongated Kelvin cells
 - statistics on number and orientation of closed windows
- DNS of higher Re flows: inertial coefficient and turbulence spectra
- applicability of turbulence models for turbulence inside porous media
References I

• E. Werzner, M.A.A. Mendes, S. Ray and D. Trimis
 Modelling and Simulation of Metal Melt Filtration Process.
 FILTECH Conference 2013, Wiesbaden, Germany, October 22 – 24, 2013.

• P. Rößger and H. Jorschick
 Experimentelle und numerische Bestimmung der effektiven Wärmeleitfähigkeit
 offenzelliger Keramikschäume bei Temperaturen von bis zu 750 °C.
 Projektarbeit, Institute of Thermal Engineering, TU Freiberg, 02.06.2014.

• K. Schwartzwalder and A. V. Somers
 Method of making porous ceramics articles.

• W. Thomson
 On the Division of Space with Minimum Partitional Area.
 Philos. Mag. 24, 503, 1887.

• J. Storm, M. Abendroth, M. Emmel, Th. Liedke, U. Ballaschk, C. Voigt, T. Sieber and M. Kuna
 Geometrical modelling of foam structures using implicit functions.

• J. F. Blinn
 A generalization of algebraic surface drawing.
References II

• D. Yu, R. Mei, L.-S. Luo and W. Shyy
 Viscous flow computations with the method of lattice Boltzmann equation.

• A.A. Mohamad and A. Kuzmin
 A critical evaluation of force term in lattice Boltzmann method, natural convection problem.