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[A] square matrix of coefficients 
d Vector between two cells centers 
K Vector in the non-orthogonality treatment 
S Source term 
S surface area vector 
t time 
V Volume 
Δ Difference 
Γ Diffusivity 
λ Under-relaxation factor 
µ Dynamic viscosity 
ρ Density 
Φ tensorial quantity 
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How to get more insight into fluid flow in porous media? 

How can we capture the complexity of porous media 

(specially carbonate rocks)? 

Different effects in pore scale modelling? 

How does system chenge when velocity increases? 
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Finite Volume Method 

Convection: 

Laplace: 

Divergence: 

2.3 Equation Discretisation 79

The collocated arrangement, however, has significant advantages: firstly, the

number of coe�cients that must be calculated is minimised because each of the govern-

ing equations is discretised using the same control volume. Secondly, it has significant

advantages in complex solution domains, especially when the boundaries have slope

discontinuities or the boundary conditions are discontinuous [99].

However, the collocated arrangement was not used for a long time because of

di�culties with pressure-velocity coupling and the occurrence of oscillations (checker-

boarding) in the pressure field [301, 99, 413, 305, 304]. A simple cure for this problem

was proposed by Rhie and Chow [318] and since then the collocated arrangement has

been adopted by most CFD codes, including commercial ones.

In this study, the collocated variable arrangement is adopted, although it has

been found that a revised solution procedure is sometimes necessary to handle sharp

density gradients frequently encountered in the solution of the two-fluid and interface-

capturing models. The revised solution procedure mimics the operation of a solution

procedure devised for a staggered variable arrangement, but keeping the collocated

variable arrangement. Details of this procedure will be given in Sections 3.2 and 4.2.

2.3 Equation Discretisation

The purpose of equation discretisation is to transform one or more governing equa-

tions into a corresponding system of algebraic equations. The solution of this system

approximates the solution to the original equations at some pre-determined locations

in space and time. Consider the generic form of the standard transport equation for

any tensorial quantity �:

@⇢�

@t|{z}
time derivative

+ r • (⇢U�)| {z }
convection term

= r • (�r�)| {z }
di↵usion term

+ S�(�)| {z }
source term

(2.3)

where ⇢ is the density, U is the velocity, � is the di↵usivity and S�(�) represents

a source term. The terms in the standard transport equation represent the rate of

change per unit volume (time derivative), the e✏ux by convection per unit volume

(convection term), the rate of transport due to di↵usion (di↵usion term) and the rate

of production/destruction per unit volume (source term).

80 Finite Volume Discretisation

In the following Sections, the standard transport equation is used as an example

to explain equation and temporal discretisation. However, more complex transport

equations are frequently encountered in multi-phase flow and other complex physics

applications. The finite volume method is, of course, not limited to the discretisation of

governing equations similar to the standard transport equation and the discretisation of

additional terms which are encountered in the applications of this study are discussed

along with the discretisation of the terms in the standard transport equation.

A finite volume discretisation of equation (2.3) is formulated by integrating over

the control volume VP and time:
Z t+�t

t

Z

V
P

@⇢�

@t
dV +

Z

V
P

r • (⇢U�) dV

�
dt

=

Z t+�t

t

Z

V
P

r • (�r�)dV +

Z

V
P

S�(�)dV

�
dt

(2.4)

Most spatial derivative terms are converted to integrals over the surface S bound-

ing the volume using the generalised form of the Gauss’s theorem:
Z

V

r⌦ � dV =

Z

S

dS⌦ � (2.5)

where dS is the outward pointing di↵erential of the surface area vector. The symbol

⌦ is used to represent any tensor product, i.e. inner, outer or cross, and the respective

derivatives: divergence r •�, gradientr� and curlr⇥� when the particular derivative

is defined. The volume and surface integrals are then approximated using appropriate

schemes.

In the remainder of this Section, details of the discretisation practices utilised to

approximate the volume integrals of equation (2.4) are discussed. The discussion is

not carried out on a strict term-by-term basis in order to be able to introduce some

notation for face interpolation (Section 2.3.1) and face gradients (Section 2.3.2). This

notation is then utilised in the discretisation of the convection (Section 2.3.4) and

di↵usion (Section 2.3.5) term. The discretisation of the time integrals of equation (2.4)

is considered in Section 2.5.

2.3.1 Face Interpolation

Interpolation of the cell-centred values to the face centres is fundamental to the finite

volume method. It is utilised by many discretisation practises discussed in this Section

Gauss theorem: 

EquaAon	  DiscreAsaAon	  	  
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2.3 Equation Discretisation 83

2.3.3 Time Derivative

Discretisation of the time derivative such as @⇢�
@t

of equation (2.3) is performed by

integrating it over a control volume. In this study, the Euler implicit time di↵erencing

scheme is used exclusively. It is unconditionally stable, but only first order accurate

in time. For the static meshes employed in this study, assuming linear variation of �

within a time step gives:

Z

V

@⇢�

@t
dV ⇡ ⇢n

P �n
P � ⇢o

P �o
P

�t
VP (2.11)

where �n ⌘ �(t + �t) stands for the new value at the time step we are solving for and

�o ⌘ �(t) denotes old values from the previous time step.

2.3.4 Convection Term

Discretisation of convection terms such as r • (⇢U�) of equation (2.3) is performed by

integrating over a control volume and transforming the volume integral into a surface

integral using the Gauss’s theorem as follows:

Z

V

r • (⇢U�) dV =

Z

S

dS • (⇢U�) ⇡
X

f

S • (⇢U)f�
f(F,S)

=
X

f

F�
f(F,S)

(2.12)

where F is the mass flux through the face f defined as F = S • (⇢U)f . Again, the value

�f on face f can be evaluated in the variety of ways described in Section 2.3.1.

2.3.5 Di↵usion Term

Discretisation of di↵usion terms such as r • (�r�) of equation (2.3) is done in a similar

way to the convection term. After integration over the control volume, the term is

converted into a surface integral:

Z

V

r • (�r�) dV =

Z

S

dS • (�r�) ⇡
X

f

�f (S •r
f

�) (2.13)

Note that the above approximation is only valid if � is a scalar.

On orthogonal meshes, the face normal gradient r
f

� defined in Section 2.3.2 is a

second order accurate approximation for the face gradient used in the approximation.

84 Finite Volume Discretisation

However, on non-orthogonal meshes, an additional correction term is introduced in

order to preserve second order accuracy. Thus the full gradient approximation reads:

S •r
f

� = |�|r?
f

�
| {z }

orthogonal contribution

+ k • (r�)f| {z }
non-orthogonal correction

(2.14)

where � and k are vectors to be determined by the non-orthogonality treatment.

Non-orthogonality treatments have been subject to intensive research [99, 286]. In this

study the over-relaxed approach by Jasak [185] is utilised.

2.3.6 Source Term

Source terms, such as S�(�) of equation (2.3), can be a general function of �. Before

discretisation, the term is linearised:

S�(�) = �SI + SE (2.15)

where SE and SI may depend on �. The term is then integrated over a control volume

as follows:
Z

V

S�(�)dV = SIVP�P + SEVP (2.16)

The importance of linearisation becomes more clear after the discussion of tem-

poral discretisation in Section 2.5. There is some freedom on exactly how a particular

source term is linearised. When deciding on the form of discretisation, its interaction

with other terms in the equation and its influence on boundedness and accuracy should

be examined. This is discussed in detail in Section 2.6.1.

2.3.7 Curl

The curl, r ⇥ �, is only defined for vectors. It could be determined by invoking the

Gauss’s theorem. However, it computationally less expensive to calculate it from the

cell-centred gradient described in Section 2.3.2 using the following relationship:

r⇥ � = 2 ⇤(skewr�)

where the antisymmetric part of the second rank tensor T is defined as skew (T) =

1

2

�
T�TT

�
and the Hodge dual of T is a vector whose components are given by
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For non-orthogonal meshes, correction term as below is used to preserve the 
second order accuracy 

Where Δ and k are vectors which will be calculated by non-orthoganality 
treatment 

Where SE and Sf can be dependence on Φ. The source term is 
integrated over control volume as 

And is linearized as 

Diffusion: 

Source Term: 

EquaAon	  DiscreAsaAon	  	  
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Boundary condition: 
Fixed value: 

Fixed gradient: 

In this way, it is second order accurate if Φb is constant and otherwise it’s first 
order accurate 

SIMPLE method: 

Relaxation factor: 

SoluAon	  

Co =
Uf .d
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Δt
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2.6 Solution Techniques for Systems of Linear Algebraic Equations 89

where Uf is a characteristic velocity, e.g. velocity of a wave front or the velocity

of a flow.

Euler implicit uses implicit discretisation of the spatial terms, thereby taking new

values �n:

�P = �n
P (2.26)

�f = �n
f (2.27)

S •r
f

� = S •r
f

�n = |�|r?
f

�n + k • (r�o)f (2.28)

It is first order accurate in time, guarantees the boundedness of the solution and

is unconditionally stable. It should be noted, however, that in order to guarantee

boundedness, the non-orthogonal correction has to be treated explicitly. This

will be discussed in more detail in Section 2.6.1.

In this study, the Euler implicit method is used exclusively and the final discre-

tised standard transport equation now reads:

⇢P
�n � �o

�t
VP +

X

f

F�n
f(F,S)

=
X

f

�fS •r
f

�n + SIVP�n
P + SEVP (2.29)

2.6 Solution Techniques for Systems of Linear Al-

gebraic Equations

The discretisation and linearisation procedure outlined in the previous Sections pro-

duces a linear algebraic equation for each control volume. For example, equation (2.29)

is obtained for the standard transport equation (2.3). The exact form of these linear

algebraic equations depends on the governing equation and the discretisation practises

used, but they can be re-written in a generic form, such that:

aP �n
P +

X

N

aN�n
N = RP (2.30)

The value of �n
P depends on the values of the neighbouring cells, thus creating a system

of linear algebraic equations with one equation (or row) for each cell of the space

domain. These systems of linear algebraic equations can be expressed in a matrix form

90 Finite Volume Discretisation

as:

[A][�] = [R] (2.31)

where [A] is a sparse square matrix with coe�cients aP on the diagonal and aN o↵

the diagonal. [�] is the column vector of the dependent variable and [R] is the source

vector. The description of [�] and [R] as “vectors” comes from matrix terminology

rather than being a precise description of what they truly are: a list of values defined

at the centres of the control volumes. The matrix [A] can be decomposed into two

matrices containing the diagonal [D] and o↵-diagonal [N ] coe�cients, such that:

[A] = [D] + [N ] (2.32)

In general, each term of a governing equation, contributes to the matrix coef-

ficients [A] and/or the source vector [R]. Terms which are treated implicitly always

contribute to the matrix coe�cients and may contribute to the source vector. Explicit

terms, however, contribute only to the source vector.

The system of linear algebraic equations (2.31) is solved using an appropriate

numerical technique to yield a value for �. This can be done in several di↵erent ways

and summaries are given in [99, 117, 379]. In essence, solution algorithms fall into two

main categories: direct and iterative methods. Direct methods give the solution of the

system of algebraic equations in a finite number of arithmetic operations. Iterative

methods start with an initial guess and then continue to improve the current approxi-

mation of the solution until some tolerance is met. For direct methods, the number of

operations necessary to reach the solution scales approximately with the cube of the

number of equations/unknowns, making them prohibitively expensive for large systems

[413, 99, 379, 286]. On the other hand, iterative methods are often more economical,

but they usually impose some requirements on the matrix.

The matrices resulting from the discretisation discussed in this Chapter are

sparse, i.e. most of the matrix coe�cients are equal to zero. Hence, the computer

memory requirements could be significantly decreased by choosing a solver which can

preserve the sparseness of the matrix. Unlike direct solvers, some iterative methods

preserve the sparseness of the original matrix.
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Conjugate Gradient method has been used or solution 

SoluAon	  Technique	  for	  linear	  Algebraic	  EquaAons	  

16/32 



ABET is the Brunaver Emmett 
Teller surface area in m2/g  

porosity of the material  

Permeability 

K-‐C	  method	  
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Dierolf et al. (2010) 
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Change of permeability along samples Comparison with different methods 
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Pressure and Velocity field  

Different direction effect 
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Extracting intrinsic permeability and non-Darcy flow 
parameters 

Non-‐Darcy	  
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Representative volume: 

1003 voxel 

2003 voxel 

8 times bigger volume 

Non-‐Darcy	  
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∂
∂t

ρφ dV
V
∫ =

(ρpφpV )
n − (ρpφpV )

0

Δt
φ n = φ(t +Δt)
φ 0 = φ(t)

Darcy-Forchheimer: 

Darcy-Brinkmann: 

Where Φn is the new value at the time step we are solving and Φ0 is the old value 

This method is first order accurate in time and guarantees the boundedness of the 
solution and is unconditionally stable 

Momentum: 

Implicit method: 

Non-‐Darcy	  
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Non-‐Darcy	  

Beta coefficient: 
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Comparison of different models 

Recently, the petroleum industry has shown a significant interest
in non-Darcy flow studies, especially applied to the field of fractured
rocks. Hydraulic fracturing treatment is in fact necessary to put on
stream low permeability hydrocarbon reservoirs at commercial flow
rates (Holditch and Morse, 1976; Pursell et al., 1988). Hydraulic
fracturing is accomplished by injecting high pressure fluid into a
wellbore to create tensile stresses in a localized formation volume
exposed to the fluid pressure. If the induced stresses become large
enough, they break down the formation forming fractures. The
fracturing fluid must contain a proppant so that the fractures remain
open beyond the period of pumping and crack propagation. Actually,
in this case the well productivity and the overall reserves recovery
estimation can be lowered by the effect of reduction of a propped half-
length to a considerably shorter “effective” half-length, due to
possible non-Darcy flow effects inside the fractured reservoir rock.
There are also other fracture systems which may exist in hydrocarbon
reservoirs: natural fractures and fractures close to the wellbore due to
the local stress fields. These non-Darcy-flow effects in propped
fractures typically have been associated with high flow rates in both
oil and gas wells. Reductions in flow capacity of 5% to 30% can occur in
low-rate wells (Holditch and Morse, 1976).

Other studies have addressed the influence of overburden
pressure on the non-Darcy flow (Avila and Evans, 1985; Tiss and
Evans, 1989). In a previous study (Zeng et al., 2003) several
correlations between non-Darcy flow parameters and effective
stress were noted, indicating that permeability decreases while
the non-Darcy flow coefficient increases linearly with effective
stress. On the other hand, shear stress was shown to have negligible
correlations with non-Darcy flow parameters. These conclusions
were drawn from experiments on a specific geologic formation
under specific experimental conditions.

As for gas-condensate reservoirs (Noh and Firoozabadi, 2006), gas
flow can be significantly affected by liquid blocking either from
condensate accumulation or water blocking and non-Darcy flow in
the near wellbore region. Hydrocarbon blocking in gas condensate
reservoir results in significant loss of well productivity, and additional
water blocking induced by hydraulic fracturing operation often limits
the advantage possibly induced by fractures. In addition to liquid
blocking, the increased pressure drop due to inertial effects at high gas
velocity in both low permeability and hydraulically fractured
reservoirs can also further reduce the well productivity.

Hydrocarbon production from a gas condensate reservoir gradu-
ally lowers the bottom hole flowing pressure below the dew point. In
this case, in-situ retrograde condensation occurs, leading to the
segregation and mobilization of the liquid phase towards the
producing wells. The liquid phase accumulates around the rock
volume surrounding the borehole, forming a ring of high liquid
saturation which progressively impairs the gas deliverability. In
addition, the produced gas becomes progressively lighter, leaving
underground important volumes of marketable hydrocarbons. In the
above conditions, predicting reservoir performance and economy
requires an accurate modeling of the flow behavior and of the
thermodynamics of those processes (Kalaydjian et al., 1996).

The tools of modern petroleum engineering are powerful, and the
results of their application are often impressive (Longmuir, 2004).
Notwithstanding these novel tools, there are still anomalies such as in
some Improved Oil Recovery projects where field results fall short of
laboratory performance. There is a surprising lack of accessible
published data confirming the validity of Darcy's law at reservoir
conditions, i.e., live reservoir fluids flowing at reservoir velocities
through consolidated or unconsolidated rocks under overburden
stress, at reservoir temperatures and pressures. So far, petroleum
engineering has taken little notice of the existing data showing the
scarce validity of the Darcy's law at low velocities (also known as “Pre-
Darcy flow” in other disciplines, e.g., Soil Science) that, on the
contrary, are well known in non-petroleum literature.

1.1. Pre-Darcy and Darcy flow

Hydrologists have done numerous researches on low velocity flow
in connection with water movement through aquifers. Soil scientists
have investigated the percolation of water through soils under the
influence of very low gradients. In the chemical engineering literature,
some authors (Fand et al., 1987; Liu and Masliyah, 1996) have noted
that there may be departures from Darcy's law at low fluid velocities.
Similarly, civil engineering is interested in low velocity flow,
particularly because of the issue of clay dewatering. A large number
of published experimental and theoretical studies performed by
researchers in the field of the above disciplines have investigated the
intrinsic limitations of the validity of Darcy's law at low fluid velocity.

In the decade around 1970, Basak (1977) reviewed a number of
studies reported in the soil science literature and developed a
classification scheme for flow regimes, shown in modified form in
Fig. 1. He identifies three main zones: 1) Pre-Darcy zone, where the
increase of fluid velocity can be larger than proportional to the
increase of fluid pressure gradient. 2) Darcy zone, where fluid flow is
laminar and Darcy's law holds its validity. Here, the fluid velocity is
directly proportional to the applied gradient and the trend necessarily
extrapolates to the origin. 3) Non-Darcy zone, where the increase of
fluid velocity is smaller than proportional to the increase of fluid
pressure gradient.

Also Neuzil (1986) noted the lack of data to confirm the validity of
Darcy's law at low fluid velocities. Although he was somewhat
skeptical about certain reported “Pre-Darcy” phenomena, he made
clear that the use of Darcy's law at low velocity regimes is only a
hypothesis, an unconfirmed extrapolation from higher velocity and
gradient regimes.

In 1978, Soni et al. reported a series of water flow test through
unconsolidated media (sands and glass beads), designed some
experiments to cover a very wide range of flow velocities, and
observed pre-Darcy, Darcy and non-Darcy flow regime, as shown in
the following log–log scale (Fig. 2).

Later, Meyer and Krause (1998) performed a very careful, well-
documented set of experiments and found complex departures from
Darcy's law regarding gas flow at low velocities in various ranges of
pressure through consolidated rock samples.

In the light of the above, due to the importance of the non-Darcy
effect in describing fluid flow in porous media, remarkable efforts
have been made to take it into account in well performance
simulations (Ewing et al., 1999). However, this process dramatically
increases the expense of numerical simulation with a high order of
approximation (Garanzha et al., 2000).

Therefore, a criterion to identify the beginning of non-Darcy flow is
needed. Two types of criteria, the Reynolds number and the
Forchheimer number have been widely used in the past for that

Fig. 1. Classification of flow regimes in porousmedia expressed as a function of pressure
gradient. Superficial velocity stands for volumetric flow per unit surface. The solid line
represents experimental data while the dotted line is a linear fit (after Basak, 1977).
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q  Small length scale can cause high instability (high Co. number) in Navier-
Stokes flow 

q  Flow direction has a significant effect on results for complicated porous media 
(carbonate rocks) 

q  K-C method can be applied in homogenous porous media 
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