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Motivation T
Advection dominated equations

08, (Rc)+V -Ve—V-DVe=F, V-V =0

contaminant transport

Time dependant inflow concentration Stationary groundwater flow

P. Frolkovi¢, M. Lampe, G. Wittum: Numerical simulation of contaminant transport in

groundwater using software tools of r3t. Comp. Vis. Sc., 2012, to appear
P. Frolkovi¢, J. Kacur: Semi-analytical solutions of contaminant transport equation with nonlinear
sorption in 1D, Computational Geosciences, 2006
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Motivation
Moving groundwater table

Ohp+V -Vo=0, V=-K(Np—0pj), V-V=0

L - - -
PR Y 2 i a2 o b nl
PV aF oF = e

zero level set pressure velocity

o extension of flow velocity to whole domain

e boundary conditions on implicitly given interface
e Immersed interface methods

P. FrolkoviC: Application of level set method for groundwater flow with moving
boundary. Advances in Water Resources, 2012




Motivation HE
Interfaces moving in normal direction T
Vo
Orh - V¢ =0,
0tV

P. Frolkovic, K. Mikula, J. Urban: Semi-implicit finite volume level set method for
advective motion of interfaces in normal direction. Appl. Num. Meth. 2014



General scheme
1D advection

Oic+ Ve =0, c(z,0)=c(z)

equivalent "balance law” formulation

Oic+ 0,(Ve) —co,V =0, c(x,0) = ()

space discretization

Vier = Vi1

c(x;)0.V(xz;) = ¢

Op(c(i)V (2i)) =
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General scheme e
Properties
) AtVH% n—1/2  n—1/2 Aﬂ/;'—% n—1/2  n—1/2 n—1
G T Ax (CH% G )_ Ax (i—% o >:Ci

obtained also by finite volume discretization in 2D/3D
In this form it Is conservative
particular scheme obtained by choice of

n— 1 1 o
oS (s i), (T ) and
Z—|—2 2 2

explicit or implicit or explicit/implicit:
c’~'are known, ¢ are unknowns
high-resolution form in the space discretization

involves 2" and 1st order form, “limiters”



Implicit schemes
15t order implicit upwind

o AtViJr% (Cn—1/2 B @—1/2) B AtVZ._% ( n—

' Ax i3 ! Ax i—3
central difference?
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Implicit schemes
15t order implicit upwind

o AtVH% (Cn—1/2 B @—1/2) B AtVi_% (Cn—1/2 B C@—1/2> _ 1
’ Ax i+3 ’ Ax i—3 : :
central difference?
Cir 5 \G T Ciy1) s =g
upwind difference V> 0
19 Aﬂ/;-_% Aﬂ/;-_% .
n=1/2 _ n n — n—
CH_% C; C; + A C;i_q Ay + C;
a system of linear algebraic eq’s, here it is simple

positive coefficients scheme for arbitrary time step




Implicit schemes

Figure 4. Grid and numerical solution for no upwind.

Stabilizing the Elder example by full upwind resulted in qualitatively very dif-
ferent numerical results. As full upwind added an unnecessary large amount of
“artificial” diffusion, the numerical solution was during time simulation too diffu-
sive that resulted into a different number of the fingers for this grid. On the other
hand, the simple algorithm of partial upwind scheme gave analogous numerical
results with respect to no upwind method, but with no oscillations presented (see

the Figure 5).

P. Frolkovi€, H. De Schepper: Numerical modelling of convection dominated
transport coupled with density driven flow in porous media, Adv. Wat. Res.,2001



Implicit schemes T
Advantage

fully coupled with other implicit terms

Disadvantage

poor resolution for pure advection



Explicit schemes
1st order upwind e

c; +

AtVH% (C”_1/2 B n_1/2> B AtVi_% (Cn_1/2 Cn—1/2> _ 1
Ax i3 i . | N

e upwind difference for V> 0

n—1/2

1/2 _
C. 1 / — 1
Z—|—§

_ n—1 n—
=c¢, ~ and c = C,



Explicit schemes T
1st order upwind

AtV 1 ALV, 1
&+ +3 (C@_Em B Cp—1/2) B > (Cn—1/2 C@—1/2> _ -1
Azx +3 '

upwind difference for V' > 0

n—1/2

1/2 _
S /2 n—1
Z+§

_ n—1 n—
=c¢, ~ and c = C,

explicit definition of unknowns

AtV. 1 AtV.
= A -
Azx

N

LAz
positive coefficients scheme for restricted time step



Explicit schemes
1St order upwind

AtV 1 ALV, 1
&+ +3 (C@_fm B 077’_1/2> B > (Cn—1/2 C@—1/2> _ -1
Az +3 '

e upwind difference for V> 0

n—1/2

1/2 _
C. 1 / — 1
Z—|—§

_ n—1 n—
=c¢, ~ and c = C,

o explicit definition of unknowns

X AtVi_l AtVi_
cl = c” A -
Ax

N

LAz
e positive coefficients scheme for restricted time step
e aremedy - flux-based method of characteristics



Explicit schemes

1st order exp

ICIt upwind

M= gmm=—— -
T T
- ol
F o

Fig. 1. Grid with interpolated ini-
tial condition % (the left picture)
and the nmmerical solution of the
explicit method (16) at t = 3/4, if
the Courant number C is equal to
1 (the right picture}. The minimum
of the solution is 0 and the maxi-
mum is 1.

Fig. 2. Numerical solution of the
explicit method (16) if C = 24/23 >
1 (the left picture, the minimum is
—0.125 and the maximum is 1.12)
and for ¢ = 0.5 (the right picture,
the minimum is 0 and the maximum
is 0.659).

Fig. 3. Numerical solution of the
implicit method (15) if C = 24/23 >
1 (the left picture, the maximum is
0.419) and with C = 0.5 (the right
picture, the maximum is 0.469).

P. FrolkoviC: Flux-based method of characteristics for contaminant transport in
flowing groundwater, Comp. Vis. Sc., 2002



Explicit schemes T
2"d order accurate upwind

AtViJr% AtVZ._%
Ax ( Az (

4 12 @—1/2)

it U
general idea like “finite Taylor series” for V' > 0
n—1/2 AZIZ‘ At

n—1 n—1 n—1
IRt 2 e gt
Z-I-% t 2 () 2 1A
n—1/2 1 Az At 1
C. ="+ —0,c " — —V.0,c
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Explicit schemes
Level set method

O+ V -V =0

0

», . Qo - “~ )
e T /
T <<

3 N ¥
ﬂ » ‘V‘ -~ - ~ o

" - »”
~ ww =

zero level set | many level sets velocity and streamlines

e capturing interfaces in applications

P. Frolkovi¢, K.Mikula: High-resolution flux-based level set method. SIAM J. Sci.
Comp. 2007



Explicit schemes
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Explicit schemes
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Explicit schemes T
Advantage

good resolution for pure advection

Disadvantage

decoupled from other terms



Explicit schemes
Time splitting errors

R10ic1 + 0,c1 + Ri\ic1 = .., R =1
Ro0;co + 0pco + Rodocog = Rihicr +..., Ry=4

concentrations at t=0 ...
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Explicit schemes 5
Time splitting errors .
R10ic1 + 0,¢1 + Ri)\c1 = .., Ri=1
Ro0ico + Opco + Rodocg = R+ ..., Ry=4
concentrations at t=0 ... ... and after 2 large time steps

flux-based method of characteristics
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Explicit schemes 5
Time splitting errors .
R10ic1 + 0,¢1 + Ri)\c1 = .., Ri=1
Ro0ico + Opco + Rodocg = R+ ..., Ry=4
concentrations at t=0 ... ... and after 2 large time steps

apparent time splitting error




Semi-implicit schemes oot
Inflow Implicit / Outflow EXpliCit Note that v > 0
o At%+% (C?_ll/g B 7?_1/2) B At‘/i—% (C@_f/z B C@—1/2> _ el
’ Az i+3 ! Ax =3 ! ’
origin idea
g gt (- - S5 (e - ) o

K.Mikula, M.Ohlberger: Inflow-Implicit/Outflow-Explicit Scheme for Solving Advection
Equations, FVCA, 2011



Semi-implicit schemes 13
Inflow Implicit / Outflow EXpliCit Note that v > 0

" AtVH% n—1/2  n—1/2 AtVi_% n—1/2  n—1/2 n1
o Azx <C’i+% - )_ Ax (Ci—% — >:Ci

origin idea

MV 1 g |

upwind method with finite Taylor series

n n
n—1/2 n—1/2  n n Ax G — G2
i—3 2 2Ax
n—1 n—1
n—1/2  n-1/2 AT CLy] —Cq
C. 1 - C’L —
it3 2 2Ax

P. Frolkovi¢, K. Mikula, J. Urban: Semi-implicit finite volume level set method for
advective motion of interfaces in normal direction. Appl. Num. Math., 2014



Semi-implicit schemes T
Inflow Implicit / Outflow Explicit

n At‘/;+% n—1 n—1 At‘/;_% n n n—1
“ Ax (CH% ~ G ) Az (C' 1 _Ci> — G

2

non-conservative in general

they can be rewritten to a conservative form
second order accurate
oscillatory in general

standard limiter technigues can be used
linear system with matrices of special structures

special solvers can be used
fast sweeping and fast marching methods



Semi-implicit schemes
lllustrative 2D example

e expansion in normal direction with variable speed

(A RN

[

6 -4-20 2 4 6 —6 -4 -2 0 2 4 6

256 small ime steps 1 large time step



Semi-implicit schemes HE
Conservative form Note that v > 0 oo
AtV

ALV, 1 ALV,
n 2 - —n 2 —n —ny\ _ n—1
Ax 2 5



Semi-implicit schemes 13
Conservative form Note that vV > 0

AtV;_,_l Aﬂ/;-_l
2 (En . (—jn) L 2 ((—jn L — (—377,) _ C;?,—l

n
G Ax ity

Limiter in implicit part
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{1 ) =t ad () k!

Ax

choose «! such that




Inflow Implicit/Outflow Explicit i

lllustrative 1D transport equation, V=const
15t order accurate fully implicit upwind
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Inflow Implicit/Outflow Explicit | 3¢

lllustrative 1D transport equation, V=const
15t order accurate fully implicit upwind
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Inflow Implicit/Outflow Explicit | se¢
lllustrative 1D transport equation, V=const
2"d order accurate semi-implicit upwind
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Inflow Implicit/Outflow Explicit | se¢
lllustrative 1D transport equation, V=const
2"d order accurate semi-implicit upwind
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Inflow Implicit/Outflow Explicit | 3s::

[ X )
lllustrative 1D transport equation, V=const
e 2Nd order accurate method with limiter

AtV
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Inflow Implicit/Outflow Explicit | ss:
[ X )
lllustrative 1D transport equation, V=const | ¢
e 2Nd order accurate method with limiter
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Conclusion

e (semi-) implicit methods for advection
dominated problems may be revisited




