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Motivation and goal

Motivation

Interaction between immiscible fluids (Newtonian and non-Newtonian) but
also porous media, involving thin layers

Applications:

biological liquids, e.g. red blood cells
(PhD. thesis of H. El-Otmany)

flows in fractured porous media
membrane, lipid bilayer

cytoskeleton, spectrin

cytoplasm, haemoglobin

Our goal

Asymptotic modeling

Numerical treatment of interfaces

Conforming but also nonconforming finite elements:
• inf-sup stable for Stokes equations
• well-adapted to treat thin layers (no numerical locking ...)

=⇒ Development of NXFEM for non-standard interface conditions
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Outline
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1. Presentation of NXFEM

Model problem




−∇ · (µ∇u) = f in Ωin ∪ Ωex

u = 0 on ∂Ω

[u] = 0 on Γ

[µ∇nu] = g on Γ

where [u] = uin − uex, µ = µin in Ωin, µ = µex in Ωex
Ωin

Ωex

Γ

General idea of NXFEM

designed to take into account discontinuities on non-aligned meshes

introduced for conforming approximations of elliptic problems
(cf. Hansbo & Hansbo, CMAME 2002)

Characteristics:

variational problem with standard FE spaces enriched on cut cells

interface conditions treated weakly, by Nitsche’s method
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Discrete variational formulation

uh ∈W in
h ×W ex

h , ah(uh, vh) = l(vh), ∀vh ∈W in
h ×W ex

h

W i
h :=

{
ϕ ∈ H1(Ωih); ϕ|T ∈ P 1, ∀T ∈ T ih , ϕ|∂Ω = 0

}
, i = in, ex

Ωin
h

(
T in
h

)

Γ

Ωin
h

(
T in
h

)

Ωex
h

(
T ex
h

)
Ωex

h

(
T ex
h

)

Γ

Bilinear and linear forms

ah (uh, vh) :=
∑

T∈Th

∫

T

µ∇uh · ∇vh −
∫

Γ

{µ∇nuh} [vh]−
∫

Γ

{µ∇nvh} [uh]

+ ξ
∑

T∈T Γ
h

γT

∫

ΓT

[uh] [vh]

l(vh) :=

∫

Ω

fvh +

∫

Γ

g{vh}∗
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Weighted means and choice of parameters

{u} = kexuex + kinuin

{u}∗ = kinuex + kexuin

kin + kex = 1, 0 < kin, kex < 1

Tex

Γ

T in

originally (Hansbo & Hansbo, CMAME 2002):

kin =

∣∣T in
∣∣

|T |
, kex =

|T ex|
|T |

, γT =
4max

(
µin, µex

)
|T |

 robustness with respect to the mesh-interface geometry.

improvement (Barrau, Becker, Dubach & Luce, CRAS 2012):

kin =
µex|T in|

µex|T in|+ µin|T ex|
, kex =

µin|T ex|
µex|T in|+ µin|T ex|

, γT =
µinµex|T |

µin|T ex|+ µex|T in|

(see also Annavarapu, Hautefeuille, Dolbow, CMAME 2012)

 robustness with respect to the diffusion parameters, too.
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2. Extension of NXFEM to nonconforming FE

Nonconforming Crouzeix-Raviart elements

DOF: 1
|ei|
∫
ei
vds, 1 ≤ i ≤ 3

~

~
~

Notation

T Γ
h : set of cells cut by Γ

E ih: set of edges of T ih
E i,cuth : set of cut edges contained in Ωi

NΓ
h : intersection between cut edges and Γ
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Difficulty of the extension

Conforming case: interpolation operator I∗h =
(
I∗inh , I∗exh

)
on W in

h ×W ex
h

v|Ωi −→ Eiv|Ω −→ Ih
(
Eiv

)
|Ω −→ Ih

(
Eiv

)
|Ωi

h
=: I∗ih v

Nonconforming case: W i
h replaced by

V ih =

{
ϕ ∈ L2(Ωih); ϕ|T ∈ P 1, ∀T ∈ T ih ,

∫

e

[ϕ] = 0, ∀e ∈ E ih
}

Then ∫

e

I∗ih v 6=
∫

e

v, ∀e ∈ E i,cuth i = in, ex

 problem to estimate the consistency error on the cut edges

∑

i=in, ex

∑

e∈Ei,cut
h

∫

e

µi∇nui[vih]
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Proposed solutions (PhD. thesis of H. El-Otmany)

Modification of the basis functions on cut cells (DOF on cut edges)

N

T in

C

Γ

T

C C

T ex

ΓΓ

B B B

M M M

A AA

N N

uh ∈ Ṽh, ah(uh, vh) = l(vh), ∀vh ∈ Ṽh
Addition of stabilization terms on cut edges

uδh ∈ Vh, (ah +Ah +
∑

i=in,ex

δi J ih)
(
uδh, vh

)
= l (vh) , ∀vh ∈ Vh

Relationship between the two approaches

lim
δi−→+∞

|‖uδh − uh‖| = 0

Generalization to Stokes equations
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Numerical test

Reference test-case (Hansbo & Hansbo ’02)

Data:

Ω = (0, 1)
2, r =

√
x2 + y2, r0 = 3/4

µin = 1, µex = 103

Stabilization parameters:

ξ = 10, δin = δex = 100

Ω

Ωex

µex

µin

Ωin

Γ

The exact solution is given by:

u (x, y) =





r2

µin
if r ≤ r0

r2

µex
− r2

0

µex
+

r2
0

µin
if r > r0,

Implementation in the C++ library CONCHA

conforming case (PhD. thesis of N. Barrau)

nonconforming case: second approach
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Comparison with conforming NXFEM

Conforming FE

N energy norm ratio L2-norm ratio

64 3.45e-01 1.00 2.83e-02 1.00

256 1.68e-01 2.05 6.27e-03 4.52

1024 8.03e-02 2.09 1.41e-03 4.45

4096 3.95e-02 2.03 3.38e-04 4.17

16384 1.97e-02 2.01 8.21e-05 4.11

65536 9.82e-03 2.00 2.02e-05 4.06

Nonconforming FE with stabilization

N energy norm ratio L2-norm ratio

64 3.93e-01 1.00 3.16e-02 1.00

256 1.66e-01 2.36 6.03e-03 4.24

1024 7.89e-02 2.11 1.36e-03 4.44

4096 3.88e-02 2.03 3.24e-04 4.19

16384 1.88e-02 2.07 7.69e-05 4.21

65536 9.73e-03 2.05 1.71e-05 4.13
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Nonconforming NXFEM: computed solution

Fig: Exact solution Fig: Computed solution
(N = 65536)

Fig: Profile along a
diagonal

12



Motivation and goal Presentation of NXFEM Extension to nonconforming FE Darcy flow with a thin layer Stokes flow with a thin layer Perspectives

3. Darcy flow with a thin layer

Model problem




−∇ · (K∇ũε) = f in Ωinε ∪ Ω0
ε ∪ Ωexε

ũε = 0 on ∂Ωε

[ũε] = 0 on Γinε ∪ Γexε

[K∇ũε · n] = 0 on Γinε ∪ Γexε

where K is a symmetric, positive definite tensor and

K =





Kin in Ωinε
K0
ε in Ω0

ε

Kex in Ωexε

, f =





f in in Ωinε
0 in Ω0

ε

fex in Ωexε

, K0 = lim
ε→0

εK0
ε

Ω0
ε =

{
ζ ∈ R2; ζ = ξ + εln(ξ), ξ ∈ Γ and − h(ξ)

2
< l <

h(ξ)

2

}

n unit normal to the mean curve Γ, h : Γ̄ −→ R smooth and bounded
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Asymptotic modeling

Assumptions: rectilinear mean curve (Γ = [0, 1]), constant thickness (h = 1).

Change of variables

(x, y) ∈ Ωiε  (s, l) ∈ Ωi, ṽ(x, y) = v(s, l)

Domain (x, y) New domain (s, l) Change of variables

Ωinε =]0, 1[×]− 1− ε
2 ,
−ε
2 [ Ωin =]0, 1[×]−3

2 ,
−1
2 [

s = x, l = y + ε−1
2

∇s,lv = ∇x,y ṽ

Ω0
ε =]0, 1[×]−ε2 ,

ε
2 [ Ω0 =]0, 1[×]−1

2 ,
1
2 [

s = x, l = 1
εy

∂sv = ∂xṽ, ∂lv = ε∂y ṽ

Ωexε =]0, 1[×] ε2 , 1 + ε
2 [ Ωex =]0, 1[×] 1

2 ,
3
2 [

s = x, l = y − ε−1
2

∇s,lv = ∇x,y ṽ
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Weak formulation

Variational problem

uε ∈ V, aε(uε, v) =

∫

Ωin∪Ωex

fv, ∀v ∈ V

where:

aε(u, v) =

∫

Ωin

Kin∇u · ∇v +

∫

Ωex

Kex∇u · ∇v+

∫

Ω0

(
εK0

ε,11∂su∂sv +K0
ε,12(∂su∂lv + ∂lu∂sv) +

1

ε
K0
ε,22∂lu∂lv

)

V =H1
0 (Ω)

Key point

Uniform coercivity for ε small enough: ∃c > 0 s.t.

aε(v, v) ≥ c‖v‖2V , ∀v ∈ V
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Convergence of uε as ε −→ 0

‖uε‖V ≤ c‖f‖0,Ωin∪Ωex and ‖∂luε‖0,Ω0 ≤ c ε‖f‖0,Ωin∪Ωex

=⇒ uε ⇀ u0 in V (at least a subsequence)

∂luε → 0 in L2(Ω0) and ∂lu0 = 0 a.e. in Ω0

1
ε∂luε ⇀ ω0 in L2(Ω0) (at least a subsequence)

∫

Ω0

(
K0

12∂su0 +K0
22ω0

)
∂lv = 0, ∀v ∈ V

=⇒ ω0(s, l) = −K
0
12

K0
22

∂su0 a.e. in Ω0

If K0
ε is diagonal, then ω0 = 0.
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Limit problem

Variational limit problem

u0 ∈ V0, a0(u0, v) =

∫

Ωin∪Ωex

fv, ∀v ∈ V0

where:

a0(u, v) =

∫

Ωin

Kin∇u · ∇v +

∫

Ωex

Kex∇u · ∇v +

∫

Γ

α0(s) ∂su ∂sv

α0(s) =

∫ 1/2

−1/2

detK0(s, l)

K0
22(s, l)

dl

V0 =
{
v ∈ V ; ∂lv = 0 in Ω0

}

Well-posed problem w.r.t. ‖|v|‖2 =
∑

i=in,ex

‖(Ki)1/2∇v‖20,Ωi +‖α1/2
0 ∂sv‖20,Γ

=⇒ uε → u0 in V (the whole sequence)
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Limit problem

Asymptotic model problem

Let Γin, Γex  Γ, Ωin  Γ×]− 1, 0[, Ωex  Γ×]0, 1[, Ω =]0, 1[×]− 1, 1[





−∇ · (K∇u0) = f in Ωin ∪ Ωex

u0 = 0 on ∂Ω

[u0] = 0 on Γ

[K∇u0 · n]− ∂s(α0∂su0) = 0 on Γ

For a single domain with a thin layer: Ventcel’s boundary condition.
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Extension to a smooth curved interface

Curvilinear coordinates

Ω0
ε =

{
ζ ∈ R2; ζ = ξ + εln(ξ), ξ ∈ Γ and − h(ξ)

2
< l <

h(ξ)

2

}

Assume the thickness is constant (h = 1) and the mean curve Γ is smooth:

s ∈ [0, 1] → ξ = ξ(s) ∈ Γ, s curvilinear abscissa, {τ, n} Frenet basis

Frenet’s formulae:
dτ

ds
= r n,

dn

ds
= −r τ with r = r(s) the curvature of Γ

In curvilinear coordinates (s, l), one has ∇u =

(
∂su

1− ε rl ,
∂lu

ε

)T
.

Finally, we get the same interface condition on Γ:

[K∇u0 · n]− ∂τ (α0∂τu0) = 0
19



Motivation and goal Presentation of NXFEM Extension to nonconforming FE Darcy flow with a thin layer Stokes flow with a thin layer Perspectives

NXFEM for the asymptotic model

Goal

Development of a stable and consistent numerical method of NXFEM type

We focus on conforming FE ( ... natural extension to nonconforming FE).

For the sake of simplicity, assume Ki diagonal: Ki = κiI. Then α0 = κ0.

Consistency

ah(u, vh)− l(vh) =

∫

Γ

∂s(α0∂su){vh}∗

= −
∑

T∈T Γ
h

∫

ΓT

α0 ∂su ∂s{vh}∗ +
∑

N∈NΓ
h

(α0∂su)(N)[{vh}∗]N

{vh}∗ is discontinuous along Γ due to the weights kin, kex in the mean

[u] = 0 implies ∂su = {∂su} = {∂su}∗ on Γ

∂s{ϕ}∗ = {∂sϕ}∗ on ΓT because kin, kex are constant on ΓT 20
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NXFEM for the asymptotic model

Bilinear form

Γl

Γr

N

anewh (uh, vh) :=ah(uh, vh) +
∑

T∈T Γ
h

∫

ΓT

α0 ∂s{uh}∗ ∂s{vh}∗

−
∑

N∈NΓ
h

α0(N)

(
{∂s{uh}∗}N [{vh}∗]N + {∂s{vh}∗}N [{uh}∗]N

)

+ γ
∑

N∈NΓ
h

γN [{uh}∗]N [{vh}∗]N

with γ > 0, γN :=
α0(N)

|Γl|+ |Γr| and the jump / mean at a node N ∈ NΓ
h :

[ϕ]N := ϕl−ϕr, {ϕ}N := νlϕl+νrϕr, νl =
|Γl|

|Γl|+ |Γr| , νr =
|Γr|

|Γl|+ |Γr|

Since [{u}∗]N = [u]N = 0 and {∂s{u}∗}N = ∂su(N), consistency follows:

anewh (u, vh)− l(vh) = 0, ∀vh ∈W in
h ×W ex

h
21
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NXFEM for the asymptotic model

Stability

|‖ϕ‖|2 =
∑

i=in,ex

‖K1/2∇ϕ‖20,Ωi +
∑

T∈T Γ
h

hT ‖{K∇nϕ}‖20,ΓT +
∑

T∈T Γ
h

γT ‖[ϕ]‖20,ΓT

‖ϕ‖2new = |‖ϕ‖|2 +
∑

T∈T Γ
h

‖α1/2
0 ∂s{ϕ}∗‖20,ΓT +

∑

N∈NΓ
h

γN [{ϕ}∗]2N

Thanks to the choice of νl, νr in {·}N and to ∂s{vh}∗ constant on Γl, Γr =⇒

{∂s{vh}∗}2N ≤
1

|Γl|+ |Γr|
(
‖∂s{vh}∗‖20,Γl + ‖∂s{vh}∗‖20,Γr

)

For simplicity, assume α0 constant. Then

|α0(N){∂s{uh}∗}N [{vh}∗]N | ≤ ‖α1/2
0 ∂s{uh}∗‖0,Γl∪Γr

(
γ

1/2
N |[{vh}∗]N |

)

For ξ and γ large enough, stability follows:

anewh (vh, vh) ≥ c‖vh‖2new, ∀vh ∈W in
h ×W ex

h 22
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Numerical test

f = 0, K ∂u
∂n = 0 on ΓN , u = uD on ΓD

κin = κex = 1, κ0 = 2000, ε = 0.001

same test as in Frih, Martin, Roberts & Saada, Comput. Geosci. 2012

(different limit problem; interface aligned with the mesh)

we obtain similar numerical results (both for aligned and not aligned
meshes)
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Comparison between uε and u0

24
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4. Stokes flow with a thin layer

Stokes

StokesStokes

Original model problem Limit model problem

Γ

Non-standard transmission
conditionsΓ

Stokes
ε

ε −→ 0

Stokes

Model problem




−µ∆ũε +∇p̃ε = f in Ωinε ∪ Ω0
ε ∪ Ωexε

div ũε = 0 in Ωinε ∪ Ω0
ε ∪ Ωexε

ũε = 0 on ∂Ωε
[ũε] = 0 on Γinε ∪ Γexε

[µ∂nũε − p̃εn] = g on Γinε ∪ Γexε

where µ =





µin in Ωinε ,
µ0

ε
in Ω0

ε,

µex in Ωexε ,

f =





f in in Ωinε
f0

ε
in Ω0

ε

fex in Ωexε

g =





gin on Γinε

gex on Γexε
25



Motivation and goal Presentation of NXFEM Extension to nonconforming FE Darcy flow with a thin layer Stokes flow with a thin layer Perspectives

Rectilinear interface

Change of variables

(x, y) ∈ Ωiε  (s, l) ∈ Ωi, ṽ(x, y) = v(s, l)

In the thin layer:

∂xṽ = ∂sv, ∂y ṽ =
1

ε
∂lv, divx,y(ṽ1, ṽ2)T = ∂sv1 +

1

ε
∂lv2, dx dy = ε ds dl

Change of unknown pressure in Ω0 : εp0
ε  p0

ε

26
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Mixed formulation

Mixed weak formulation

(uε, pε) ∈ H1
0 (Ω)× L2

0(Ω)




aε(uε, v)− bε(pε, v) = L(v), ∀v ∈ H1
0 (Ω)

bε(q, uε) = 0, ∀q ∈ L2
0(Ω)

aε(u, v) =
∑

i=in,ex

∫

Ωi

µi∇u : ∇v +

∫

Ω0

µ0∂su · ∂sv +
1

ε2

∫

Ω0

µ0∂lu · ∂lv

= a(u, v) +
1

ε2
a0(u, v)

bε(p, v) =
∑

i=in,ex

∫

Ωi

p divv +

∫

Ω0

p ∂sv1 +
1

ε

∫

Ω0

p ∂lv2

= b(p, v) +
1

ε
b0(p, v)

L(v) =
∑

i=in,0,ex

∫

Ωi

f i · v +
∑

i=in,ex

∫

Γi

gi · v
27
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Convergence of (uε, pε) towards (u0, p0)

Uniform well-posedness of mixed formulation

‖v‖2V =
∑

i=in,0,ex

‖µ1/2
i ∇vi‖20,Ωi , ‖q‖2M =

∑

i=in,0,ex

‖µ−1/2
i qi‖20,Ωi

uniform coercivity of aε(·, ·) in H1
0 (Ω)

=⇒ uε ⇀ u0 in H1
0 (Ω) (at least a subsequence), ∂luε → 0 in L2(Ω0)

u0 ∈ Ker a0 =
{
v ∈ H1

0 (Ω); ∂lv = 0 in Ω0
}

=: V0

key point: inf-sup condition of b(·, ·) on M0 × V0 where

M0 :=
{
q ∈ L2

0(Ω); q = q(s) in Ω0
}

Let p̂0
ε(s) =

∫ 1/2

−1/2
p0
ε(s, l) dl for s ∈ Γ. Then p̂ε := (pinε , p̂

0
ε, p

ex
ε )∈M0 and

‖p̂ε‖M ≤
1

β
sup
v∈V0

b(p̂ε, v)

‖v‖V
=

1

β
sup
v∈V0

a(uε, v)− L(v)

‖v‖V
≤ C‖uε‖V

=⇒ p̂ε ⇀ p0 in L2(Ω) (at least a subsequence), p0 ∈M0 28
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Limit problem

Variational limit problem

(u0, p0) ∈ V0 ×M0




a(u0, v)− b(p0, v) = L(v), ∀v ∈ V0

b(q, u0) = 0, ∀q ∈M0

well-posed mixed problem (Babuska-Brezzi theorem)

=⇒ (uε, p̂ε)→ (u0, p0) (the whole sequence)

Γin, Γex  Γ, Ωin  Γ×]−1, 0[, Ωex  Γ×]0, 1[, Ω ]0, 1[×]−1, 1[

V0  
{
v ∈ H1

0 (Ω); v|Γ ∈ H1
0 (Γ)

}

M0  

{
(q, qΓ) ∈ L2(Ω)× L2(Γ);

∫

Ω

q +

∫

Γ

qΓ = 0

}

For v ∈ V0, we denote vΓ := v|Γ
29
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Limit problem

Asymptotic model problem





−µ∆u0 +∇p0 = f in Ωin ∪ Ωex

div u0 = 0 in Ωin ∪ Ωex

u0 = 0 on ∂Ω
[u0] = 0 on Γ
uΓ

0,1 = 0 on Γ

[µ∂nu0 − p0n]−
(

−∂spΓ
0

∂s(µ
0∂su

Γ
0,2)

)
= f̄0 + gin + gex on Γ

Unknowns: (uin0 , u
ex
0 ) and (pin0 , p

ex
0 , pΓ

0 )

Extension to a smooth curved interface

30
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5. Perspectives

Extension

Thin layer of non-Newtonian fluid
• Newtonian constitutive law:

τ = 2ηD, D =
1

2

(
∇u+∇uT

)
• quasi-linear constitutive law, popular but not realistic Oldroyd-B model:

τ + λt
O
τ = 2η

(
D + λr

O
D

)
,

O
A =

∂

∂t
A+ u · ∇A−A∇uT −∇uA

• nonlinear constitutive law, more complex but realistic Giesekus model:

τ + λ
O
τ +

η

2λ
τ · τ = 2ηD

Ongoing work

Numerical method for Stokes equations with previous interface conditions

Future work

Implementation and numerical validation

Moving interface
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Inf-sup condition on M0 × V0

Steps of the proof

For any p = (pin, p0, pex) ∈M0, let p̄ = (p̄in, p̄0, p̄ex) with p̄i = 1
|Ωi|

∫
Ωi p

i.

Let p̃ = p− p̄. Then for any v ∈ V0:

b(p, v) =

∫

Ωin∪Ωex

p̃ divv +

∫

Γ

p̃0∂sv1 +

∫

Γ

(p̄in − p̄ex) v · n

p̃i ∈ L2
0(Ωi) for i = in, ex, hence standard inf-sup condition for 1st term:

∃ṽi ∈ H1
0 (Ωi) s.t. ṽ =

(
ṽin, 0, ṽex

)
∈ V0, b(p, ṽ) = ‖µ−1/2p̃‖20,Ωin∪Ωex

p̃0 ∈ L2
0(Γ) so ∃ṽ0 ∈ H1

0 (Γ) and a continuous extension vΓ ∈ V0 s.t.

b(p, vΓ) = ‖µ−1/2
0 p̃0‖20,Ω0 +

∫

Ωin∪Ωex

p div vΓ

for p̄in − p̄ex ∈ R there exists v̄ ∈ V0 s.t.∫

Γ

(p̄in − p̄ex)v̄ · n =
(
p̄in − p̄ex

)2 ≥ C‖p̄‖2M
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Inf-sup condition on M0 × V0

Steps of the proof

take v = αṽ + βvΓ + γv̄ with α, β, γ > 0 chosen by using Young’s
inequality s.t.

b(p, v) ≥ c1‖p‖2M , ‖v‖V ≤ c2‖p‖M
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