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Abstract

Traditionally, the finite difference method has been applied to solve numerically the PDE
governing fluid flow on a rectangular mesh in porous media for its easy implementation
and computational efficiency.

The aim of this work is to solve the two-dimensional convection diffusion equation on a
non-rectangular grids formed only by quadrilaterals honouring the internal structures of a
reservoir (preferential flow channels, faults, areas of high permeability contrast, changes in
sediment type, etc.), taking into account different physical configurations of the porous
medium.

To take advantage of the good representation of the domain through these meshes, the
finite volume method was used, which is conservative and facilitates the treatment of the
boundary conditions. In this method the convection diffusion equation is integrated on
each quadrilateral (control volume) of the mesh, thus obtaining the integral form of the
equation. The velocity value in the face of each quadrilateral is determined according to the
direction of the flow (upwind scheme). After approximating the integrals involved and
taking into account the boundary conditions, a discrete equation in each control volume
showed up. Finally, a large sparse linear system is obtained, generally non-symmetric and
ill-conditioned, which can be solved by iterative methods such as GMRES with incomplete
LU preconditioning.

Different scenarios were considered varying boundary conditions (Dirichlet and Neumann
type), source term, and diffusion constant fluid velocity. The results are consistent with the

physical interpretation of each configuration.
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Formulation of the problem

To solve the convection-diffusion equation

9,
a_dt): V- (kVOF ) -0 -Vo+f
in 2D on an structured quadrilateral mesh using the finite volume method

considering

* a rectangular domain QQ — R?

 Dirichlet or Newman type conditions on the each domain edge
* the velocity ¥ small enough
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Structured quadrilateral meshes

Given a two-dimensional domain whose boundary is a closed polygonal line with

internal boundaries defined also by polygonal lines, it is required to generate a grid
consisting only by quadrilaterals with the following features:

* be conformed, that is, to be a partition of the two-dimensional domain such that
the intersection of any two quadrilaterals is a vertex, an edge or empty (never a
portion of one edge)

* be structured, which means that only four quadrilaterals meet at a single node and
the quadrilaterals that make up the grid need not be rectangular, and

* the mesh generated must rely on the internal boundaries.

It is also considered the possibility that interior points of the domain to be
vertices of the resulting grid. These points will represent wells on the reservoir
to simulate.

Internal boundaries, that may have a complex layout and configuration, mimic the
structure of the reservoir.
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Structured quadrilateral meshes

The fundamental technique for generating such grids, is the deformation of

an initial Cartesian grid and the subsequent alignment with the internal boundaries.

The internal boundaries will be modeled using four types of polygonal lines:

* An open polygonal line strictly included in the domain, from now on an IAC
(Internal Alignment Curves).

* An open polygonal line extended to the boundaries of the domain, from now on a
SIAC (Spanned IAC).

* A convex four side polygon, denoted as QIAC (Quadrilateral IAC).
* An intersected set of QIAC, denoted as IQIAC.

SIAC P

9|8

IQIAC
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Structured quadrilateral meshes

The proposed general process for generating the desired mesh, follows these steps:
* Decompose the QIAC and IQIAC into a set of SIAC
Extend the IAC to the external boundaries to form SIAC
Generate the initial uniform Cartesian grid

For each SIAC (including the original SIAC)

v Associate a line from the initial grid

v" Redistribute the nodes on the associated line into the SIAC j £ \

Redistribute nodes on the external boundaries s /

Smooth the overlapping mesh

The smoothing process seeks to relocate in a smooth manner the nodes in the
overlapping mesh in order to get the quadrilateral mesh structured, conformed and
tailored to the internal boundaries of the domain.

This is accomplished through the numerical solution of an elliptic partial
differential equation based on finite differences.
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Structured quadrilateral meshes

The transformation of the physical plane (x,y) (overlapping mesh) to the
transformed plane (§,n) (smooth mesh) is given by the function

f(x,y) = (Em), with & = &(x,y), n = n(xy).
Similarly, the inverse transformation is given by the functions x = x(§, n), y = y(&, n).

The partial derivatives of the function f respect to £ and 1 are as follows:

()= 590
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Structured quadrilateral meshes

The smooth mesh satisfies the standard system of elliptic equations
Sx F Sy =0
Mz T 1yy = 0

with Dirichlet type boundary conditions, corresponding to the positions of fixed
nodes on the internal and external boundaries.

These equations are analytically inverted and the calculations are carried out in the
physical plane (overlapping mesh), being the non-linear inverted equations as

follows
axia — Z’BXan + )/Xnn =0
ayeg = 2BYeq + ¥y =0
where a=xn2+yn2, I = XgXn + Yeyn y=x§2+y§2.

with transformed boundary conditions.

The elliptic partial differential equation will solved using finite differences.
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Structured quadrilateral meshes

Example 1.
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Structured quadrilateral meshes

Example 2.
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Structured quadrilateral meshes

Example 3.
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Numerical model

Steady state.

The convection diffusion equation
—V - (kVOF )+ V- Vo= f

jt2
The control volume CV(i,j),
defined by A, B, Cand D j+3/2 () PN °
D C

oooj+1
[ @
(i+1/2,j+1/2)
A

j-1/2 ° ° P

: i+3/2
i1 . i+1
I 12 i i+1/2
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Numerical model

Steady state.

Integrating the equation on CV(i,j) and applying the Green Theorem

¢, J¢ ) jg o
B k d Jids = £. .S
f;iBCD ( ox Y ay ) ABCD V(D hds lfz.__] (1)

Approximating the integral of the first term of the equation (1) on the segments AB,
BC, CD and DA

96 90 90 90
k a— A_YAB = a— A\'AB -+ = A_1'BC — ()_ A\'BC +
L% g s P TR, 2 i+1,j+4 ¥ Yiplris

(DO ] d d d

9 e 2] o [®] wm 2] s

_d'\_i—{;.j+1 ) i+3.j+1 2 ij+3 9 ]yl
6= ki+%,j+%
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Numerical model

Steady state.

To evaluate the partial derivatives in (i+74,j), will be used the average value on the
area shown in the figure

—~—
Aya g . o . .
Aycp | D c

[@

ox|.
1+

+0p+Aypc + ¢i+

~—= (0., 1.1
1 S M5 j-5 YA'B j+3/2

1.
2/

+¢4+AYpa’)

2

j*2

i-1/2
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Numerical model

Steady state.

Discrete expression for the first integral of the equation (1)

1 Npc | Npy
A’{Z(N]DA —NAB)(IJ,-_%J-_% + (Myp — 2 + 1 )¢,-+%.J-_%
| Nep Nyp
+Z(-NAB—1VBC)¢,-+§_J-_,1 + (Mpas + 1 2 )(P,-_,_lr_jJr{F
—(Myp + Mpc + Mcp + Mpy)0: 414l
Nep |
-|-( 5+ Mpe— T)¢i+%-f+% - Z(NCD —Npa)9;_1 ;.3
-NBC Np4 |
+( y TMcep——— )91 43+ 4(NBC —Nep)9;, 3 543
A2 o+ Ax2 A.l'-_,l’_. -+_1AJ‘AB+A\‘.__1L-+1A\;43
where — Mgp=—o— Np=_—S2ri o 220
N A.TéC—l_A\%‘C . A_l‘ 1A1 BC+A-\H_ H_IA\‘BC
Mpc = S Npc = St
Avep+Axgp AVj3 j+1AeDp+ A, 3 51 Axep
AJCD = S ATCD — 5 2
A.‘%A + A“f’)A Ay, Lipl AvD4a +Ax; 1 ;. 1AXDy
A{DA - S** NDA - } - S** } }
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Numerical model

Steady state.

The second integral in the equation (1)

—f k(a—d’ y—a—(pdx) +j§ Vo -fids =7, .S
ABCD \ dx dy ABCD -/

is approximated on the segments AB, BC, CD and DA by
V- ﬁ]f+§.j [(p]i-i—%.jA.TAB‘*' [v- ’7]14%.1 [‘P]i+l_,.J'A"AB
+ V)0 ey )i et AVBe+ V- 7]y 1 (9]0 511 AxBe
+[V-7 i+%,j+1 [¢]z'+%.j+l Avep + [V ﬁ]i+:%.j+l [¢]i+{;.j+l Axcp
+ [ ﬁ]i.j-+—% [¢]i.j+{, Avpa + [{:'ﬁ]i.j+§ [¢]i.]'+~_1; AXp4
Upwind approximation for ¢ in (i+%2,))
[¢]1+%] - ﬁABd)i-{-é—.j—% + (1 — BAB)Q)I_._%.J_{_%.
1 if[v-n].1.20
'th - - =
With  B=10 if[3-7] 1.<0
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Numerical model

Steady state.

Discrete expression for the second integral of the equation (1)

(BB O48)9;. 1 ; 1+ (Ppa Opa)9;_1 5,
{(1—PB4p)O4p+ (1 —Ppc)Opc+ (1 —Bcp)Ocp + (1 - Ppa)Opat ;. 1 ;4
(BBc OBc)$;.3 j+1 +(Bep Ocp) 9,1

where O =1V, %J(AuB—I-A\AB)

Opc = [V-7i];44, -;(A1Bc+A\BC)

Ocp = [¥-7l;,1 ;11 (Avep + Avep)

Ops = [V'ﬁ]_,J %(A‘DA + Axpy)
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Numerical model

Steady state.

Finally the discrete expression for the convection diffusion equation (1)

k Npc Np
—¥ =7 (Nap—Npa)9; 1 ; 1+ {k(—Myp+ Yo 4A ) +B4BO4B} ;1 ;1
k f\fcp A
+Z(—N.AB +1VBC)¢)I.+%_J._% + {A’(—ﬂ"fDA — n 4 1 ) +ﬁDAODA}¢ j+l

+ {k(ﬁf’fAB + Mpe +Mcep —I—AIDA)
+(1—P4B)O4p+ (1 —Ppc)Opc + (1 = Bcp)Ocp + (1 — Bpa) Opa} 4y, 1 541

V A/CD k
+{A(—T —Mpc+—, ) +PBcOBc}9;,3 .1+ Z(_iVCD +Npa)®;_1 .3

N JVDA k
+{]\(—T—111CD+ A )+BCDOCD}¢I'+%J+%+Z(_1VBC+AICD)¢1'+3_]'+%
~Ji+4,5445=0

where k= k1+1}+—
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Numerical model

Boundary conditions.

Dirichlet conditions.

=3
J'5/ /. / e ™ i=5/2
J=
o o 0 j=2

bottom

Newman conditions.

i+2 boundary
— hinf' 1
i+1.1 +3
— hsu -, 1
i+%,n Pit+s3
= hizq; 1
1j+3 itz
— hder' 1
nJ-l-% It
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Numerical model

Transient state.

Convection diffusion equation including the term varying in time

do _ BcD ()(D
ar

)-7-vo+ 1

dx* = ody?

Integrating on the Control Volume ABCD

Jd o d=¢ d=0
ik 49 I [N // —v-Vo dA
./LBCD dt ABCD( (9.\' d") o +f)

The integral on the right hand side was already calculated and denoted by V.
Integrating in time between t, and t,

n
) 5]
// /ﬂdf(]'i— /ljldi = // ((‘bl_(pO)dA: [Uj(]f
ABCD pd JJABCD }0

Considering a convex combination for the right hand side follows the implicit

method
At
o' ——yl=¢’

A NAS B s NAs.
NM2PorousMedia-2014 22




Numerical model

Transient state.

Finally, the discrete system is as follows

Atk Al Nsc  Npu
?Z(\AB .\DA)Q)I ‘lr-j_l +_{k(—JIAB+ jc - A )+leB AB}(pH_ J—
ArA Nc N
S 4( N+ \BC)(P 131 —{1\( —Mp4 — iD + jB) +ﬂDA0DA}¢

Al
+(1 + —{k Mg+ Mg+ Mcp —I—ﬂfDA)

+(1 —PB4B)O4ap+ (1 —Bpc)Opc + (1 — Bep)Ocp + (1 — Ppa)Opa } )¢ 1+ o+

N N, At k )
—{1\( AB — Mpc+ ZD)-}-[}BC Bc}(f) J+1+ 54( CD+A"DA)¢,-1_%_J-+,_3$

(B DA AR Nge N
—{ CD+T)+BCD CD}fP i T g7 (—Nec+ D)9, 343
_¢z+ j+1+A{f+ J+3

with some variant for de CV on the boundary depending on the boundary conditions
(Dirichlet or Newman).

The resultant linear system, sparse , generally non-symmetric and ill-conditioned, and large
dimensioned, will be solved using GMRES with incomplete LU preconditioning.
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Results

Example 1.

k=2inR2, k=1 en R1. Dirichlet type boundary conditions with zero value on the
boundary. Sources in P1 and P2 with f = 300.

0.003117
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Results

Example 2.

k=200 in Canaland k=5 in P1 and P2. Dirichlet type boundary conditions with zero
value on the top and bottom boundary, 0.2 on the left and right boundary except on
the zone corresponding to the “Canal” where is 2. Sources in P1 and P2 with f = 50.
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Results

Example 4.

k =1000 in R2 and k =1 in R1. Mixed boundary conditions: right boundary ¢$=0, left
boundary d¢von=10, top and bottom boundaries d¢von=0.

9.24243
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Conclusions

* A numerical model based on the finite volume methods for the solution of the
convection diffusion equation in 2D was developed.

* The physical domain was discretized using non-rectangular grids formed only by
quadrilaterals honoring the internal structures of a reservoir.
* The numerical model was implemented for both steady and unsteady state using

modular programming in C language.

* Different scenarios were considered varying boundary conditions (Dirichlet and
Neumann type), source and sink term, and diffusion constant fluid velocity. The
results are consistent with the physical interpretation of each configuration.

Upcoming

* configurations involving complex structures/geometries
* boundary conditions on internal and external boundaries

* two-dimensional three-phase black oil fluid flow equations
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