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Context of research 

• Comparison of three 2D coupled  models for water and solute transport  in 
porous media  (1) COMSOL (2) FAESOR and (3) FDM-MIC model.

• Description of 2D FEM for coupled water and solute transport in porous media 
using FAESOR (Krysl, 2000).

• Description  of 2D FDM for water flow coupled with Marker in Cell (MIC) by  
Gerya (2010), for solute transport in porous media.

• Model verification problems and a application problem → Comparison based on 
global mass balances, iteration methods, time stepping methods.
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Equations Involved - Water Transport
•  Richard's Equation

 

• van Genuchten functions  

C m(Ψ
(a+1, b))+S w S s

Δ t
δ

b+1
+∇⋅q=0 ...... Eq(1. a) ... Head Based ...COMSOL

q=−K (Ψ)∇(Ψ+ z )...... Eq(3)

K (Ψ)=k r K sat ...... Eq(4) S eff =[1+α ⌈Ψ ⌉
n
]
−m ...... Eq(5)

θ(Ψ)=θr+S eff (θs−θr)...... Eq(6) k r=S eff
1 /2
[1−(1−S eff

1/m
)

m
]
2 ...... Eq(7)

S w=S eff +
θr

θs
...... Eq (8)

Cm=
αm

1−m
(θs−θr )S eff

1/m(1−S eff
(1/m))m ...... Eq(9)

δ
b+1
=(Ψ

a+1, b+1
−Ψ

a+1, b
)...... Eq(2)

θ
a+1
−θ

a

Δ t
+

C m(Ψ
(a+1, b))+S w S s

Δ t
δ

b+1
+∇⋅q=0 ...... Eq(1. b) . Mixed Based . FAESOR /FDM
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Equations Involved - Solute Transport
• Advection Dispersion Equation

∂θc
∂ t

+∇⋅u=0 ...... Eq(10)

u=−D∇ c+q c ...... Eq(11)

Dαβ=αT ⌊v ⌋ δαβ+(αL−αT )
vα vβ
⌊v ⌋

+Dmδαβ ...... Eq(12)

v=
q
θ

...... Eq(13)

4/28



01-10-14

Challenge the future

Delft
University of
Technology

Initial and Boundary Conditions

Water and 
Solute 
Transport
Model

Initial Condition Boundary Conditions

top horizontal edge bottom horizontal edge

Richards 
Equation

Neumann Robbins

Advection 
Dispersion 
Equation

Dirichlet Robbins

Ψ( x , z , 0)=z−zref

c ( x , z ,0)=cini

q(x ,0, t)=qtop

c ( x , 0, t)=ctop

q(x ,−1, t)=−K surf (Ψamb−Ψ)

c ( x ,−1, t )=q c
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FEM - COMSOL and FAESOR

[N ]=[
ξ
η

1−ξ−η] [N ]=[
(η+ξ−1)(2η+2 ξ−1)

ξ(2ξ−1)
η(2η−1)

−4 ξ(η+ξ−1)
4ηξ

−4 η(η+ξ−1)
]
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FAESOR - Richards Equation
C
∂ψ

∂ t
−∇⋅K [∇ (ψ+z )]=0• Head based form of RE

• Applying weighted residual, Green theorem, boundary conditions

• Solution technique for RE with Picards iteration's scheme (Celia et al, 1990)

•

∫v
ηC

∂ψ

∂ t
dV +∫v

(∇ η)⋅K [∇(ψ+ z ) ] dV +∫S 2

η q̄n dS+∫S3

ηK surf (ψ−ψamb ) dS=0

T v
b
+Cm

δv
b+1

Δ t
+(K m+H m)Ψ v−Lw v=0

Ψ v
a+1, b+ 1

=δv
b+ 1

+Ψ v
a+1, b
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FAESOR - Richards Equation
• Temporal discretization

• For convergence

• Truncation error

• We have considered                     and

for                                       and

• Loop for convergence with iterations and automatic time stepping

   

dt=min (Δ titer∥Δ tmax )

Ψ v prime

a+1, b+ 1
=
Ψ v

a+1, b+1
−Ψ v

a+1, b

dt

truncerr=
(Ψ v prime

a+1, b+1−Ψ v prime

a+1, b) dt

2

δr=1×10−3
δa=1×10−3

convcrit=δr|Ψ v
a+1, b+ 1

|+δa
testval=|δv

b+1
|−convcrit

if niter⩾maxiter (i .e . 25) ,→Δ t iter=Δ t⋅μ1(i .e 0.25)→not converged→niter=niter+1

max (testval )<0,→t=t+Δ t→converged

if niter≤miniter (i .e .15) ,→Δ t iter=Δ t⋅mu2(i . e .1 .1)
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FAESOR - Advection Dispersion Equation
θ
∂c
∂ t

−∇⋅D[∇(c)−q c ]=0• Head based form of ADE

• Applying weighted residual, Green theorem, boundary conditions.

• Solution technique for ADE with Euler backward (Implicit) method.

∫v
ηθ

∂ c
∂ t

dV +∫v
(∇ η)⋅D [∇(c )−q c ] dV +∫S3

ηn q c dS=0

[ 1
Δ t
T v+DAm]Conv a+1

=[ 1
Δ t
T v]Conma

+Lsva+1
=0
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FDM - Richards Equation

θij
a+1−θij

a

Δ t
+

C m(Ψ ij
(a+1, b))+S w S s

Δ t
δij

b+1=−
qz i+1/2, j−qz i−1/ 2, j

Δ z i−1/2, j

−
qxi , j+1/2−qx i , j−1/2

Δ xi , j−1/2
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Marker-in-Cell
• Eulerian and  Lagrangian time derivative

of concentration related together by advection term

• Lagrangian term solved on Euler nodes

• Advection term solved on Lagrangian markers

Dc
Dt

=
∂ c
∂ t

+q⋅∇ c

Dc
Dt

=−∇⋅D∇ c

xmrk
tx mrk+Δ tx mrk=xmrk

txmrk+vxmrk Δ txmrk

zmrk
tzmrk+Δ tzmrk=z mrk

txmrk+ zx mrkΔ tzmrk
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Marker-in-Cell
• Dispersion term on Euler Nodes

• Changes in effective concentration field on Euler nodes

• New marker concentration

• Incremental update creates small scale variation on sub-grid, 

which can be damped by sub-grid diffusion operation 

• Subgrid diffusion applied on markers over characteristic local concentration 
diffusion time scale

•

•  

∇⋅D∇ c=

−(−Dzi+1/2, j

c i+1, j−ci , j

Δ z i , j
)−(−Dz i−1/2, j

c i , j−ci−1, j

Δ z i−1, j
)

Δ z i−i /2, j

−(−Dxi , j+1 /2

ci , j+1−ci , j

Δ x i , j
)−(−Dx i , j−1/2

ci , j−c i , j−1

Δ x i , j−1
)

Δ x i , j−i /2

Δ ci , j=c i , j
t+Δ t

−c i , j
t

cm
t+Δ t

=cm
t
+Δ cm

Δ ci , j=Δ ci , j
subgrid

+Δ ci , j
remaining

Δ cm
subgrid

=cm(nodes)
t

−cm
t [1−exp(−d

Δ t
Δ tdiff

)]
whereΔ tdiff =

1

2 Dmx /Δ x 2
+2 Dmz/Δ z2

Δ ci , j
remaining

=Δ c i , j−Δ c i , j
subgrid

cm (corrected )
t+Δ t

=cm
t
+Δ cm

subgrid
+Δ cm

remaining
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Mass Balance Check
• Water transport

FEM - COMSOL and FAESOR

• FDM

• Solute transport

• FEM - COMSOL and FAESOR

• MIC

• Dispersion

• Advection

                                  (Sun, 1999)

MB(t )=Total additional mass insidedomain−Total net flow out of domain

MB(t )=Total additional concentration mass inside domain−Total net flux out of domain

MBw(t)=∑ (θ−θ0)dv−[∑ (−qx i ndz¿−qxout dzout)+∑ (−qzi ndx i n−qzout dxout )]dt

MBs(t )=∑ (θ c−θ0 c)dv−[∑ (−ux i ndz i n−ux outdz out)+∑ (−uzi ndx i n−uzout dxout )]dt

MBw(t)=∑ (θ−θ0)dv−[∑ (−qx i nΔ zIN−qxoutΔ zIN )+∑ (−qz i nΔ xIN−qzoutΔ xIN )]dt

MBsD(t )=∑ (θ c−θ0 c)dv−[∑ (−uDxi nΔ zIN−uDxoutΔ zIN )+∑ (−uDzi nΔ xIN−uDzoutΔ xIN )]dt
uDx=D xx

dc
dx

uDz=Dzz
dc
dz

moutA=∑ mc−mrecycled
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Spatial Scenarios: Model Verification

Hydraulic
parameters

α 
[1/m]

n Θ
s

 
[m3/m3]

Θ
r 
[m3/m3] K

sat 

[m/s]

coarse sand 2.00 1.50 0.40 0.04 5.00 x 10-2

                 COMSOL                                                           FAESOR                                                         FDM-MIC
                                                                             (Mesh by NETGEN (Schöberl, 2003))
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Material Properties : Model Verification
Parameters Problem 1 Problem 2 Problem 3

z
ref 

[m] 0.00 -1.00 -2.00 

c
ini 

[kg/m3] 1.00 1.00 1.00

q
top 

[m/s] 0 0 0

K
surf 

[1/s] 5.0 x 10-2 5.0 x 10-2 5.0 x 10-2

Ψ
amb 

[m] -1.00 -1.00 -1.00

c
top 

[kg/m3] 0.00 0.00 0.00

S
s 
[kg/m2s2] 4.00 x 10-6 4.00 x 10-6 4.00 x 10-6

D
m 

[m2/s] 1.00 x 10-10 1.00 x 10-10 1.00 x 10-10

α
L  

[m] 0.10 0.10 0.10

α
T 
[m] 1.0 x 10-2 1.0 x 10-2 1.0 x 10-2
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Results : Model Verification

Figure: Problem 1, z
ref

 = 0m, pressure 
head along depth (● for COMSOL, ■ 
for FAESOR, ▲ for FDM) at time 0, 
100, 275, 365s (a), outlet concentration 
along time (● for COMSOL, ■ for 
FAESOR, ▲ for MIC) (b), mass 
balance for water transport (● for 
COMSOL, ■ for FAESOR, ▲ for 
FDM) (c) and Mass balance for solute 
transport (● for COMSOL, ■ for 
FAESOR, ▲ for Dispersion term in 
MIC and ▲ for Advection term in 
MIC) (d). 

(a)                                                         (b)

       (c)                                                        (d)
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Results : Model Verification

Figure: Problem 2, z
ref

 = -1m, pressure 
head along depth (● for COMSOL, ■ 
for FAESOR, ▲ for FDM) at time 0, 
100, 275, 365s (a), outlet concentration 
along time (● for COMSOL, ■ for 
FAESOR, ▲ for MIC) (b), mass 
balance for water transport (● for 
COMSOL, ■ for FAESOR, ▲ for 
FDM) (c) and Mass balance for solute 
transport (● for COMSOL, ■ for 
FAESOR, ▲ for Dispersion term in 
MIC and ▲ for Advection term in 
MIC) (d). 

(a)                                                         (b)

       (c)                                                        (d)
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Results : Model Verification

Figure: Problem 3, z
ref

 = -2m, pressure 
head along depth (● for COMSOL, ■ 
for FAESOR, ▲ for FDM) at time 0, 
100, 275, 365s (a), outlet concentration 
along time (● for COMSOL, ■ for 
FAESOR, ▲ for MIC) (b), mass 
balance for water transport (● for 
COMSOL, ■ for FAESOR, ▲ for 
FDM) (c) and Mass balance for solute 
transport (● for COMSOL, ■ for 
FAESOR, ▲ for Dispersion term in 
MIC and ▲ for Advection term in 
MIC) (d). 

(a)                                                         (b)

       (c)                                                        (d)
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Spatial Scenarios : Application Problem

Hydraulic
parameters

α 
[1/m]

n Θ
s

 
[m3/m3]

Θ
r 
[m3/m3] K

sat 

[m/s]

coarse sand 2.00 1.50 0.40 0.04 5.00 x 10-2

fine clay 1.00 2.50 0.45 0.08 5.00 x 10-5

                 COMSOL                                    FAESOR                                 FDM-MIC

19/28



01-10-14

Challenge the future

Delft
University of
Technology

Material Properties: Application Problem

Parameters Application Problem 

z
ref 

[m] -2.00 

c
ini 

[kg/m3] 1.00

q
top 

[m/s] -5.0 x 10-3

K
surf 

[1/s] 5.0 x 10-2

Ψ
amb 

[m] -1.00

c
top 

[kg/m3] 0.00

S
s 
[kg/m2s2] 4.00 x 10-6

D
m 

[m2/s] 1.00 x 10-10

α
L  

[m] 0.10

α
T 
[m] 1.0 x 10-2

Figure: Infiltration for application 
problem. 
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Results: Application Problem

Figure: Pressure head along depth at time 0,5,25,85,100,250,365s for  COMSOL (a), FAESOR 
(b) and FDM (c). Outlet concentration along Time for COMSOL(d), FAESOR (e), and MIC (f).

(a)                                                        (b)                                                      (c)

(d)                                                        (e)                                                      (f)
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Results: Application Problem

Figure: Mass balances for water and solute transport models for different numerical methods
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Results: Application Problem

                             COMSOL                                                     FAESOR                                                FDM-MIC
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Discussions
• In FEM 

• larger amount of test functions reduces residual error thus  numerical  
approximation becomes more accurate. FAESOR (secondary nodes) better 
results than COMSOL (default primary nodes). 

• COMSOL (Richards Equation is default head based) →

in FAESOR (Richards equation is mixed based) is linearized using  with 
Picards iteration and thus mass balance is improved.

• In FDM, placement of hydraulic conductivities and computation of darcy's 
velocities on internodes, gives better results.

• Automatic time stepping methods and time step dependent on iterations  
improves mass balance 

θ
(a+1)

−θ
(a+1)

Δ t
≠C Ψ

a+1
−Ψ

a

Δ t
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Discussions
• During computation of advection term by conventional Euler method, the 

concentration front  produces negative values. And produces values higher than 
boundary and initial conditions.

• MIC approach of calculating dispersion term on Euler nodes and advection term 
on Lagrangian markers reduces this error. 

• MIC has better mass balance than other convention Euler based methods,  
described in this research (i.e. COMSOL and FAESOR).
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Conclusions 
• FAESOR better than COMSOL considering mass balance

• FDM method for water transport and MIC method for solute transport delivers 
better performance considering mass balance.

•  Could be used to validate lab and field experiments

• Disadvantage not applicable for irregular geometry unlike FAESOR or 
COMSOL
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Questions ?
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