Comparing different numerical methods for 2D-coupled water and solute transport in porous media

Presented by Shirishkumar Baviskar^{*} and Timo Heimovaara

Department of Geoscience and Engineering, CiTG, Delft, Netherlands.

*Email: s.m.baviskar@tudelft.nl

International Conference on Numerical and Mathematical Modeling of Flow and Transport in Porous Media 29 September -3 October 2014, Dubrovnik, Croatia.

Context of research

- Comparison of three 2D coupled models for water and solute transport in porous media (1) COMSOL (2) FAESOR and (3) FDM-MIC model.
- Description of 2D FEM for coupled water and solute transport in porous media using FAESOR (Krysl, 2000).
- Description of 2D FDM for water flow coupled with Marker in Cell (MIC) by Gerya (2010), for solute transport in porous media.
- Model verification problems and a application problem → Comparison based on global mass balances, iteration methods, time stepping methods.

Equations Involved - Water Transport

• Richard's Equation

$$\frac{C_m(\Psi^{(a+1,b)}) + S_w S_s}{\Delta t} \delta^{b+1} + \nabla \cdot q = 0 \dots Eq(1,a) \dots Head Based \dots COMSOL$$

$$\frac{\theta^{a+1} - \theta^a}{\Delta t} + \frac{C_m(\Psi^{(a+1,b)}) + S_w S_s}{\Delta t} \delta^{b+1} + \nabla \cdot q = 0 \dots Eq(1,b). Mixed Based \cdot FAESOR/FDM$$

$$\delta^{b+1} = (\Psi^{a+1,b+1} - \Psi^{a+1,b}) \dots Eq(2) \qquad q = -K(\Psi) \nabla (\Psi + z) \dots Eq(3)$$

• van Genuchten functions

$$\boldsymbol{K}(\Psi) = \boldsymbol{k}_r \boldsymbol{K}_{sat} \dots \boldsymbol{E} \boldsymbol{q}(4) \qquad \qquad \boldsymbol{S}_{eff} = [1 + \alpha |\Psi|^n]^{-m} \dots \boldsymbol{E} \boldsymbol{q}(5)$$

$$\begin{split} \theta(\Psi) &= \theta_r + S_{eff}(\theta_s - \theta_r) \dots Eq(6) \qquad k_r = S_{eff}^{1/2} [1 - (1 - S_{eff}^{1/m})^m]^2 \dots Eq(7) \\ S_w &= S_{eff} + \frac{\theta_r}{\theta_s} \dots Eq(8) \qquad \qquad C_m = \frac{\alpha m}{1 - m} (\theta_s - \theta_r) S_{eff}^{1/m} (1 - S_{eff}^{(1/m)})^m \dots Eq(9) \end{split}$$

Equations Involved - Solute Transport

Advection Dispersion Equation

$$\frac{\partial \Theta c}{\partial t} + \nabla \cdot \boldsymbol{u} = 0 \dots Eq(10)$$

$$\boldsymbol{u} = -\boldsymbol{D} \nabla c + \boldsymbol{q} c \dots E \boldsymbol{q} (11)$$

$$D_{\alpha\beta} = \alpha_T [v] \delta_{\alpha\beta} + (\alpha_L - \alpha_T) \frac{v_{\alpha} v_{\beta}}{[v]} + D_m \delta_{\alpha\beta} \dots Eq(12)$$

$$v = \frac{q}{\theta} \dots Eq(13)$$

Initial and Boundary Conditions

Water and	Initial Condition	Boundary Conditions		
Solute Transport Model		top horizontal edge	bottom horizontal edge	
		Neumann	Robbins	
Richards Equation	$\Psi(x, z, 0) = z - z_{ref}$	$\boldsymbol{q}(x,0,t) = \boldsymbol{q}_{top}$	$\boldsymbol{q}(x,-1,t) = -K_{surf}(\Psi_{amb} - \Psi)$	
Advection		Dirichlet	Robbins	
Dispersion Equation	$c(x, z, 0) = c_{ini}$	$c(x, 0, t) = c_{top}$	$c(x,-1,t) = \mathbf{q} c$	

FEM - COMSOL and FAESOR

FAESOR - Richards Equation

- Head based form of RE $C \frac{\partial \psi}{\partial t} \nabla \cdot \mathbf{K} [\nabla(\psi + z)] = 0$
- Applying weighted residual, Green theorem, boundary conditions

$$\int_{v} \eta C \frac{\partial \psi}{\partial t} dV + \int_{v} (\nabla \eta) \cdot \mathbf{K} [\nabla (\psi + z)] dV + \int_{S_{2}} \eta \bar{q}_{n} dS + \int_{S_{3}} \eta K_{surf} (\psi - \psi_{amb}) dS = 0$$

• Solution technique for RE with Picards iteration's scheme (Celia et al, 1990)

$$\boldsymbol{T}_{v}^{b} + \boldsymbol{C}_{m} \frac{\boldsymbol{\delta}_{v}^{b+1}}{\Delta t} + (\boldsymbol{K}_{m} + \boldsymbol{H}_{m}) \boldsymbol{\Psi}_{v} - \boldsymbol{L}\boldsymbol{w}_{v} = 0$$

•
$$\Psi_{v}^{a+1,b+1} = \delta_{v}^{b+1} + \Psi_{v}^{a+1,b}$$

FAESOR - Richards Equation

• Temporal discretization $dt = min(\Delta titer || \Delta t_{max})$

• For convergence $\Psi_{v_{prime}}^{a+1,b+1} = \frac{\Psi_{v}^{a+1,b+1} - \Psi_{v}^{a+1,b}}{dt}$

- Truncation error $truncerr = \frac{\left(\Psi_{v_{prime}}^{a+1,b+1} \Psi_{v_{prime}}^{a+1,b}\right)dt}{2}$
- We have considered $\delta_r = 1 \times 10^{-3}$ and $\delta_a = 1 \times 10^{-3}$ for $convcrit = \delta_r |\Psi_v^{a+1,b+1}| + \delta_a$ and $testval = |\delta_v^{b+1}| - convcrit$
- Loop for convergence with iterations and automatic time stepping *if niter* \geq *maxiter*(*i.e.*25), $\rightarrow \Delta t_{iter} = \Delta t \cdot \mu_1(i.e.0.25) \rightarrow not converged \rightarrow niter = niter+1$

if niter
$$\leq$$
 miniter $(i.e.15)$, $\rightarrow \Delta t_{iter} = \Delta t \cdot mu_2(i.e.1.1)$

 $max(testval) < 0, \rightarrow t = t + \Delta t \rightarrow converged$

FAESOR - Advection Dispersion Equation

- Head based form of ADE $\theta \frac{\partial c}{\partial t} \nabla \cdot \boldsymbol{D}[\nabla(c) \boldsymbol{q} \, c] = 0$
- Applying weighted residual, Green theorem, boundary conditions.

$$\int_{v} \eta \theta \frac{\partial c}{\partial t} dV + \int_{v} (\nabla \eta) \cdot \boldsymbol{D} [\nabla(c) - \boldsymbol{q} c] dV + \int_{S_{3}} \eta n \boldsymbol{q} c dS = 0$$

• Solution technique for ADE with Euler backward (Implicit) method.

$$\left[\frac{1}{\Delta t}\boldsymbol{T}_{v} + \boldsymbol{D}\boldsymbol{A}_{m}\right]\boldsymbol{C}\boldsymbol{o}\boldsymbol{n}_{v_{a+1}} = \left[\frac{1}{\Delta t}\boldsymbol{T}_{v}\right]\boldsymbol{C}\boldsymbol{o}\boldsymbol{n}_{m_{a}} + \boldsymbol{L}\boldsymbol{s}_{v_{a+1}} = 0$$

FDM - Richards Equation

$$\frac{\theta_{ij}^{a+1} - \theta_{ij}^{a}}{\Delta t} + \frac{C_m(\Psi_{ij}^{(a+1,b)}) + S_w S_s}{\Delta t} \delta_{ij}^{b+1} = -\frac{q z_{i+1/2,j} - q z_{i-1/2,j}}{\Delta z_{i-1/2,j}} - \frac{q x_{i,j+1/2} - q x_{i,j-1/2}}{\Delta x_{i,j-1/2}}$$

10/28

Marker-in-Cell

• Eulerian and Lagrangian time derivative of concentration related together by advection term

$$\frac{Dc}{Dt} = \frac{\partial c}{\partial t} + \boldsymbol{q} \cdot \nabla c$$

• Lagrangian term solved on Euler nodes

$$\frac{Dc}{Dt} = -\nabla \cdot \boldsymbol{D} \nabla c$$

• Advection term solved on Lagrangian markers

$$x_{mrk}^{tx_{mrk}+\Delta tx_{mrk}} = x_{mrk}^{tx_{mrk}} + vx_{mrk} \Delta tx_{mrk}$$
$$z_{mrk}^{tz_{mrk}+\Delta tz_{mrk}} = z_{mrk}^{tx_{mrk}} + zx_{mrk} \Delta tz_{mrk}$$

Marker-in-Cell

- Dispersion term on Euler Nodes
- Changes in effective concentration field on Euler nodes
- New marker concentration $c_m^{t+\Delta t} = c_m^t + \Delta c_m$
- Incremental update creates small scale variation on sub-grid, which can be damped by sub-grid diffusion operation
- Subgrid diffusion applied on markers over characteristic local concentration diffusion time scale $\Delta c_m^{subgrid} = c_{m(nodes)}^t - c_m^t \left[1 - \exp\left(-d \frac{\Delta t}{\Delta t_{diff}}\right) \right]$

where
$$\Delta t_{diff} = \frac{1}{2 D_{mx} / \Delta x^2 + 2 D_{mz} / \Delta z^2}$$

•
$$\Delta c_{i,j}^{remaining} = \Delta c_{i,j} - \Delta c_{i,j}^{subgrid}$$

 $c_{m(corrected)}^{t+\Delta t} = c_{m}^{t} + \Delta c_{m}^{subgrid} + \Delta c_{m}^{remaining}$

$$\nabla \cdot \mathbf{D} \nabla c = \frac{-\left(-Dz_{i+1/2,j} \frac{c_{i+1,j} - c_{i,j}}{\Delta z_{i,j}}\right) - \left(-Dz_{i-1/2,j} \frac{c_{i,j} - c_{i-1,j}}{\Delta z_{i-1,j}}\right)}{-\left(-Dx_{i,j+1/2} \frac{c_{i,j+1} - c_{i,j}}{\Delta x_{i,j}}\right) - \left(-Dx_{i,j-1/2} \frac{c_{i,j} - c_{i,j-1}}{\Delta x_{i,j-1}}\right)}{\Delta x_{i,j-1/2}}$$

 $\Delta c_{i,j} = c_{i,j}^{t+\Delta t} - c_{i,j}^{t}$

$$\Delta c_{i,j} = \Delta c_{i,j}^{subgrid} + \Delta c_{i,j}^{remaining}$$

Mass Balance Check

• Water transport *MB*(*t*)= *Total additional mass inside domain*— *Total net flow out of domain* FEM - COMSOL and FAESOR

 $MB_{w}(t) = \sum \left(\theta - \theta_{0}\right) dv - \left[\sum \left(-qx_{in} dz_{i} - qx_{out} dz_{out}\right) + \sum \left(-qz_{in} dx_{in} - qz_{out} dx_{out}\right)\right] dt$

• FDM

 $MB_{w}(t) = \sum \left(\theta - \theta_{0}\right) dv - \left[\sum \left(-qx_{in}\Delta zIN - qx_{out}\Delta zIN\right) + \sum \left(-qz_{in}\Delta xIN - qz_{out}\Delta xIN\right)\right] dt$

• Solute transport

MB(t) = Total additional concentration mass inside domain - Total net flux out of domain

• FEM - COMSOL and FAESOR

$$MB_{s}(t) = \sum \left(\theta c - \theta_{0} c\right) dv - \left[\sum \left(-ux_{in} dz_{in} - ux_{out} dz_{out}\right) + \sum \left(-uz_{in} dx_{in} - uz_{out} dx_{out}\right)\right] dt$$

• MIC

- Dispersion $MB_{sD}(t) = \sum (\theta c - \theta_0 c) dv - \left[\sum (-uDx_{in} \Delta zIN - uDx_{out} \Delta zIN) + \sum (-uDz_{in} \Delta xIN - uDz_{out} \Delta xIN) \right] dt$ $uDx = D_{xx} \frac{dc}{dx} \quad uDz = D_{zz} \frac{dc}{dz}$
- Advection

$$m_{outA} = \sum m_c - m_{recycled}$$
 (Sun, 1999)

Spatial Scenarios: Model Verification

Hydraulic parameters	α [1/m]	n	Θ_{s} [m ³ /m ³]	$\Theta_{r}[m^{3}/m^{3}]$	K _{sat} [m/s]
coarse sand	2.00	1.50	0.40	0.04	5.00 x 10 ⁻²

Material Properties : Model Verification

Parameters	Problem 1	Problem 2	Problem 3
$z_{ref}[m]$	0.00	-1.00	-2.00
c_{ini} [kg/m ³]	1.00	1.00	1.00
q_{top} [m/s]	0	0	0
$K_{surf}[1/s]$	5.0 x 10 ⁻²	5.0 x 10 ⁻²	5.0 x 10 ⁻²
$\Psi_{amb}[m]$	-1.00	-1.00	-1.00
c_{top} [kg/m ³]	0.00	0.00	0.00
$S_{s}[kg/m^{2}s^{2}]$	4.00 x 10 ⁻⁶	4.00 x 10 ⁻⁶	4.00 x 10 ⁻⁶
$D_m [m^2/s]$	$1.00 \ge 10^{-10}$	$1.00 \ge 10^{-10}$	1.00 x 10 ⁻¹⁰
α_L [m]	0.10	0.10	0.10
$\alpha_{T}[m]$	1.0 x 10 ⁻²	1.0 x 10 ⁻²	1.0 x 10 ⁻²

echnology

Challenge the future

Figure: Problem 1, $z_{ref} = 0m$, pressure head along depth (• for COMSOL, for FAESOR, \blacktriangle for FDM) at time 0, 100, 275, 365s (a), outlet concentration along time (• for COMSOL, • for FAESOR, **A** for MIC) (b), mass balance for water transport (• for COMSOL, ■ for FAESOR, ▲ for FDM) (c) and Mass balance for solute transport (• for COMSOL, • for FAESOR, **A** for Dispersion term in MIC and \blacktriangle for Advection term in MIC) (d).

echnology

Challenge the future

Figure: Problem 2, $z_{ref} = -1m$, pressure head along depth (• for COMSOL, for FAESOR, A for FDM) at time 0, 100, 275, 365s (a), outlet concentration along time (• for COMSOL, • for FAESOR, **A** for MIC) (b), mass balance for water transport (• for COMSOL, ■ for FAESOR, ▲ for FDM) (c) and Mass balance for solute transport (• for COMSOL, • for FAESOR, **A** for Dispersion term in MIC and \blacktriangle for Advection term in MIC) (d).

17/28

for

for

Spatial Scenarios : Application Problem

Hydraulic parameters	α [1/m]	n	Θ_{s} [m ³ /m ³]	$\Theta_{r}[m^{3}/m^{3}]$	K _{sat} [m/s]
coarse sand	2.00	1.50	0.40	0.04	5.00 x 10 ⁻²
fine clay	1.00	2.50	0.45	0.08	5.00 x 10 ⁻⁵

Material Properties: Application Problem

Parameters	Application Problem		
$z_{ref}[m]$	-2.00		
c_{ini} [kg/m ³]	1.00		
q_{top} [m/s]	-5.0 x 10 ⁻³		
$K_{surf}[1/s]$	5.0 x 10 ⁻²		
$\Psi_{amb}[m]$	-1.00		
c_{top} [kg/m ³]	0.00		
S_s [kg/m ² s ²]	4.00 x 10 ⁻⁶		
$D_m [m^2/s]$	1.00 x 10 ⁻¹⁰		
$\alpha_L [m]$	0.10		
$\alpha_T[m]$	1.0 x 10 ⁻²		

Figure: Pressure head along depth at time 0,5,25,85,100,250,365s for COMSOL (a), FAESOR (b) and FDM (c). Outlet concentration along Time for COMSOL(d), FAESOR (e), and MIC (f).

FUDelft Delft University of Technology Challenge the future

Results: Application Problem

Figure: Mass balances for water and solute transport models for different numerical methods

Results: Application Problem

Challenge the future

Delft University of Technology

Discussions

- In FEM
 - larger amount of test functions reduces residual error thus numerical approximation becomes more accurate. FAESOR (secondary nodes) better results than COMSOL (default primary nodes).
 - COMSOL (Richards Equation is default head based) $\rightarrow \frac{\theta^{(a+1)} \theta^{(a+1)}}{\Delta t} \neq C \frac{\Psi^{a+1} \Psi^{a}}{\Delta t}$ in FAESOR (Richards equation is mixed based) is linearized using with Picards iteration and thus mass balance is improved.
- In FDM, placement of hydraulic conductivities and computation of darcy's velocities on internodes, gives better results.
- Automatic time stepping methods and time step dependent on iterations improves mass balance

Discussions

- During computation of advection term by conventional Euler method, the concentration front produces negative values. And produces values higher than boundary and initial conditions.
- MIC approach of calculating dispersion term on Euler nodes and advection term on Lagrangian markers reduces this error.
- MIC has better mass balance than other convention Euler based methods, described in this research (i.e. COMSOL and FAESOR).

Conclusions

- FAESOR better than COMSOL considering mass balance
- FDM method for water transport and MIC method for solute transport delivers better performance considering mass balance.
 - Could be used to validate lab and field experiments
 - Disadvantage not applicable for irregular geometry unlike FAESOR or COMSOL

References

- Celia, M., Bouloutas, E., and Zarba, R., (1990). A general mass-conservative numerical solution for unsaturated flow equation, Water Resources Research 26, 1483-1496.
- Gerya, T.V (2010). Numerical Geodynamic Modeling. Cambridge University Press.
- Krysl, P. (2000), Thermal and stress analysis with finite element method, accompanied by the MATLAB toolbox FAESOR, Pressure cooker express.
- Schöberl. J, 2003, NETGEN- 4.3, Department of Computational Mathematics and Optimization, University of Linz, Austria.
- Sun, N. (1999), A finite cell method for simulating the mass transport process in porous media, Water Resources Research 35(12), 3649-3662.

Questions ?

